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Abstract: We report on the development of a technique for differentiating between biological 
micro-objects using a rigorous, full-wave model of OCT image formation. We model an 
existing experimental prototype which uses OCT to interrogate a microfluidic chip containing 
the blood cells. A full-wave model is required since the technique uses light back-scattered by 
a scattering substrate, rather than by the cells directly. The light back-scattered by the 
substrate is perturbed upon propagation through the cells, which flow between the substrate 
and imaging system’s objective lens. We present the key elements of the 3D, Maxwell 
equation-based computational model, the key findings of the computational study and a 
comparison with experimental results. 
© 2017 Optical Society of America 

OCIS codes: (110.4500) Optical coherence tomography; (170.3880) Medical and biological imaging; (170.1470) 
Blood or tissue constituent monitoring; (170.3660) Light propagation in tissues; (050.1755) Computational 
electromagnetic methods. 
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1. Introduction 

Blood cell detection and differentiation lie at the heart of a complete blood count (CBC), 
which is a complex blood test used to evaluate the composition and concentration of the 
various cellular components of blood [1]. While effective differentiation between various cell 
types is an essential mechanism required to count the individual cells, the significance of a 
blood cell count, however, results directly from the diverse functions of the cells in the 
organism. The red blood cells (RBCs) and the white blood cells (WBCs) are two of the main 
components of human blood and they have completely different functions in the body. A low 
RBC count, for example, is an indicator of anemia, while a reduced number of WBCs may be 
caused by a medical condition, such as an autoimmune disorder or cancer [1, 2]. 

Hematology analyzers, employing optical [3] or impedance [4] methods to count single 
blood cells, have been the gold standard in CBC for decades. Recently, new methods that 
employ modern optical imaging to count various blood cells have been developed, such as 
spectrally encoded flow cytometry [5], lens-free holographic microscopy [6], and cell-phone 
based fluorescent microscopy [7]. Furthermore, new devices combining microfluidics [8] 
with optical methods have been reported to count and discriminate between blood cells [9–
16]. However, only a few existing optical methods perform differentiation between RBCs and 
WBCs using the phase information, together with magnitude, to count the cells [6, 12]. New 
counting techniques based on the impedance method also have been presented in recent years, 
such as those reported in [17, 18]. They do not, however, enable direct differentiation 
between RBCs and WBCs. 

We have previously developed a novel method for the detection and differentiation of 
moving micro-objects, such as RBCs and WBCs, based upon experimental measurements and 
knowledge of cell morphology [19]. Phase-sensitive optical coherence tomography (OCT), 
and a dedicated microfluidic chip, which is depicted in Fig. 1(a), lie at the heart of this 
system. The key advance which enables this microfluidic setup to perform blood cell 
differentiation is the embedding of the microchannels in polydimethylsiloxane (PDMS) 
mixed with titanium dioxide (TiO2), resulting in a highly scattering substrate (TiO2-PDMS); 
the depth-resolved structure of the chip is presented schematically in Fig. 1(b). The cells are 
made to flow over the top of the substrate, within the microchannel, and cell identification is 
based upon the OCT signal corresponding to the TiO2-PDMS layer, rather than the signal 
corresponding to light directly back-scattered by cell. The advantage of this approach over 
using a high numerical aperture objective, high spectral bandwidth source, optical coherence 
microscopy system to directly image sub-cellular components is reduced system complexity 
and, therefore resulting in a cheaper and more robust system. Furthermore, the approach 
employed in this paper takes advantage of the property that biological cells tend to scatter 
light predominantly in the forward direction. Moreover, unlike conventional hematology 
analyzers, our method provides additional quantitative information at the single-cell level, as 
a result of a statistical analysis of the phase perturbation introduced by flowing cells. In other 
words, this technique enables single-cell statistics (additional information at the single-cell 
level), instead of statistics applicable to the entire sample of cells analyzed by a conventional 
device. Criteria for cell differentiation are based upon differential parameters derived from 
the measured signals (Fig. 1(d)) which depend on the size, shape and sub-cellular components 
of the targeted blood cells. In the experiments, we separately studied the flowing blood 
cells—i.e., erythrocytes and leukocytes—as two separate samples. We did not perform 
experiments on whole blood since the ratio of erythrocytes to leukocytes is on the order of 
1000:1 [1, 19]. This makes numerical simulation an important tool for verification of this 
technique. Moreover, the relative quantitative agreement between experimental and simulated 
results allows for additional, otherwise inaccessible, information about both cells and the 
experimental system to be obtained in silico. For example, simulating how the OCT 
illumination beam is scattered by the blood cells is important for understanding the physical 
basis of the differentiation technique. Further, isolating specific optical properties of each 
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cell, in a noise free environment, allows the physical origin of differentiation criteria to be 
probed in a manner that would be impossible using experiment. 

In this work, we present a comprehensive, highly realistic, three-dimensional model of 
image formation for the experimental system described above. Additionally, we perform a 
quantitative comparison between simulated and experimental results. Figure 1(c) outlines the 
operation of the experimental system including the OCT beam, blood cell models and 
simulation coordinate system. Figure 1(d) shows an example experimental measurement 
consistent with the scenario depicted in Fig. 1(c), except that the signals of interest derive 
from two RBCs. The microscope coverslip is neglected in the model since it is used in the 
experiments only as the upper cover of the microchannel and does not impact upon 
experimental measurements. 

 
Fig. 1. Schematic diagram of the image formation model composed of an OCT system and a 
microfluidic chip; a) a photo of the microfluidic chip and b) its depth resolved structure; c) the 
scattering volume design (TiO2 scatterers are not displayed); and d) an example OCT image 
showing the signals of interest. 

Modelling of image formation for the combination of OCT system and microfluidic chip 
depicted in Fig. 1 is challenging. This is because the signals of interest, as shown in Fig. 1(d), 
correspond to the region containing the TiO2 scatterers. Information about cells in the 
microchannel is obtained indirectly since light contributing to the signals of interest 
propagates through a particular cell twice during its round trip from the optical fiber to the 
TiO2 scattering region and back. By definition then, models based on the first Born 
approximation [20] are not appropriate for this application. Under this approximation, light 
within an extended scatterer is assumed to be equivalent to the light that would be incident on 
the space occupied by the scatterer but in the absence of the scatterer. This approximation is 
invalid for highly scattering regions such as the TiO2-PDMS region, furthermore, it implies 
that the light incident upon the TiO2-PDMS layer will be assumed to not be perturbed by cells 
in the microchannel. Models based upon the extended Huygens-Fresnel [21] formalism (EHF) 
are not appropriate either. The EHF could be used to model the attenuation of the OCT signal 
in the TiO2-PDMS region, and a multiple scattering contribution, but not the perturbation due 
to cells in the microchannel of the light incident upon the TiO2-PDMS. Monte Carlo based 
models [22] are also not appropriate for this application since they do not model image 
formation due to deterministic refractive index distributions, as is required for this 
application. 

A highly realistic model of image formation in OCT has recently been introduced [23], 
based upon one for high numerical aperture coherent optical imaging systems [24]. This 
model is based on Maxwell’s equations and thus treats light propagation and scattering 
entirely using a full-wave formalism. We first give a brief overview of the model before 
explaining each component in further detail in Section 2. The components of the model are 
outlined diagrammatically in Fig. 2. Component 1 shows how, for the simulation of a 
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particular A-scan, the focused incident field is calculated on a transverse plane. This incident 
field is denoted by ( , ),i b ke r  where k is the wavenumber of the illumination. The details of the 
optical system are incorporated in the equation used to calculate ( , ),i b ke r  where the 
subscripts i and b denote incident and boundary, respectively. We model image formation for 
an arbitrary refractive index distribution throughout the sample, denoted ( ),sn r  where the 
subscript s denotes sample. A numerical method is used in component 2 to determine how the 
incident focused beam is scattered by the sample. Although a variety of numerical techniques 
could be used, our model uses the pseudo-spectral time-domain (PSTD) method because it 
allows for reduced spatial sampling requirements [25] compared with, for example, the finite-
difference time-domain (FDTD) and finite element methods. Another important feature of the 
PSTD method is that it allows for broadband simulation of the scattered field in a single 
simulation, by introducing a temporal pulse into the simulation. The PSTD simulation yields 
the total field within the sample space which we denote by ( , ),t s ke r  where the subscript t 
denotes total. The scattered field is ultimately required to model image formation, which is 
isolated from the total field by subtracting the known incident field. This is performed in 
component 3 where the scattered field is evaluated, for each wavenumber of interest, on a 
transverse plane in the simulation space as ( , ) ( , ) ( , ),sc b t b i bk k k= −e r e r e r  where the subscript 
sc denotes scattered. Component 4 of the model calculates how the scattered light is coupled 
into the system’s optical fiber. An approach more computationally efficient than simply 
propagating ( , )sc b ke r  to the fiber, is used to perform this coupling calculation within the 
sample space [26]. This is performed by integrating the product of the focused illumination 
and scattered field on a transverse plane. This is illustrated in Fig. 2 where the quantity to be 
integrated is given as ( ( , )) ( ( , )),sc b i bT k T k⋅e r e r  where T = diag(a1,a2,0) is a diagonal matrix 
for 0 1,ia≤ ≤  which enables the Cartesian coordinates of the field to be selected in line with 
the modeled experimental system. 

 

Fig. 2. An illustration of the four key components of the three-dimensional full-wave model of 
OCT image formation. 

2. Description of the model 

2.1 Blood cell models 

The development of refractive index models of the RBCs and WBCs, for specifying ( ),sn r  
for input to the PSTD method, was a crucial aspect of this work. This was performed by 
drawing on our knowledge of blood cell morphology and using parameters found in the 
literature [27–34]. The erythrocyte was modeled as a biconcave, homogeneous disc of 
diameter 7.7 μm and a maximum thickness of ~2μm [27], using the equation [28]: 

 ( ) ( ) ( ) ( )( )2 2 4
0.26 1 2 / 0.1583 1.5262 2 / 0.8579 2 / ,f x d x d x d x d= − + −  (1) 

where d is a diameter of RBC. Since water and hemoglobin constitute the bulk of RBC 
content, we used the absolute refractive index ne = 1.41 [28] for the central wavelength of 
illumination λ0 = 790nm; the imaginary part was neglected for this wavelength. Fig. 3(a) 
depicts a two-dimensional plot of the RBC shape, that is z2 = (f(x))2, according to Eq. (1), 
while Fig. 3(b) depicts a three-dimensional plot as z2 = (f(r))2, where 2 2 .r x y= +  

Because of the diversity of WBCs occurring in human blood, we have selected the mature 
neutrophil as representative since they are the most abundant WBC subpopulation (46−73%) 
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of the entire population of leukocytes [29]. This choice is further supported by the unimodal 
nature of the experimental results presented in Section 3 for samples containing all WBC 
subtypes. Figure 3(c) is a three-dimensional depiction of a WBC model. We introduced a 
sphere (dn = 11μm) as a model for a body of mature neutrophil. The sphere contains four 
ellipsoids (random position and orientation inside the cytoplasm) representing a 4-lobe 
nucleus and spherical granules that are identical (dg = 0.3μm) and randomly distributed inside 
the cell. In the following we briefly describe other parameters of the model. We set the 
volume fraction of the nucleus (ellipsoids) and granules (spheres) to be fn = 0.11 and fg = 0.09, 
respectively, which agree with the literature data on neutrophil morphology [30, 31]. For the 
lobed nucleus we set the refractive index to nn = 1.5 (protein), while for granules we set it to 
the upper limit for dried proteins, ng = 1.58 [34]. For the cytoplasm we chose nc = 1.36 [30], 
and the medium surrounding the cells in microchannel (1% PBS, phosphate-buffered saline) 
was approximated by water, giving nw = 1.33 for λ0 = 790nm [35] (Supporting Information). 

 

Fig. 3. Renders of the RBC and WBC refractive index models; a) a plot of the erythrocyte 
model topology; b) a three-dimensional rendering of the modeled erythrocyte surface, and c) a 
3D rendering of the leukocyte (neutrophil) model. 

2.2 Modelling the focused illumination 

The simulations presented in this paper employ parameters based upon the experimental 
system, which was used to generate experimental results presented in Section 3. An Fd-OCT 
setup with Thorlabs LSM02-BB objective lens (axial resolution: ∼3.5µm in tissue, lateral 
resolution: 8.4µm) was used for these experiments. The setup includes a fiber coupler with 
optical fibers (70/30, AC Photonics); a dedicated spectrometer with a line scan camera 
(sp4096-140k, Sprint, Basler); dispersion compensation elements; a mirror in the reference 
arm and microfluidic chip (the measured sample) [19] which is shown in Figs. 1(a)–1(b). A 
light source comprised of a broadband femtosecond laser with a spectrum of FWHM = 
142nm was employed. We used a spectrum centered on wavelength λ0 = 790nm spanning a 
total bandwidth of 250nm (ΔλMAX) in the simulation to ensure that the simulated spectrum 
contains the spectrum used in experiment. Figure 4(a) depicts the object arm of the OCT 
system and Table 1 contains a listing of the values of selected parameters describing this 
system, including all parameters defined in Fig. 4(a). These parameters were employed 

 
Fig. 4. a) The Fd-OCT system sample arm; MFD – mode field diameter, OB1 – objective lens 
of the collimator, L1, L2 – lenses, OB2 – objective lens; b) A zoomed-in, annotated, depiction 
of the objective lens shown in the boxed region of (a), illustrating the parameters used to 
calculate the focused illumination using Eq. (2). 
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throughout the simulation. To simplify the model, we also approximate the reference arm of 
the simulated setup in the same way as the object arm, except with a mirror as the sample. 

The focused illumination due to the system depicted in Fig. 4(a) is calculated by 
projecting the field emitted by the fiber into the back focal plane of OB2, resulting in the 
simpler system of Fig. 4(b). The focused illumination, ( , ),i b ke r  is then calculated using the 
Debye-Wolf integral [36] according to: 

 ( ) ( ) ( )
2

2
2

2

2
2

ˆ, exp exp ,
2 1f OB

f fOB
i b f b

OBNA
f

F dikf
k ik

NAπ <

  
  = − − ⋅    −  




 


r

r r
e r e r r s

r
 (2) 

where 2/f f OBf=r r  is the normalized position within the objective’s pupil, F is a parameter 
specifying the diameter of the Gaussian beam assumed to be incident upon the objective’s 
back focal plane, 2( ,ˆ ˆ , |1 | )f f f= ⋅ ⋅ −  s i r j r r  and ˆ )( f

e r  is a unit vector which describes 
refraction by the lens and is readily calculated using the generalized Jones matrix formalism 
[37]. Note that î  and ĵ  are the unit vectors parallel to the x and y axes, respectively. In this 
case, 2 2 2 1 2( / ) /(( ) )( (/ 2 / ))2OB OB OBF f f NA f f MFD π λ=  [23], which is found by projecting 
the Gaussian beam exiting the optical fiber onto the focal plane common to lenses L1 and L2. 
This value of F assumes that the lenses in Fig. 4(a) are arranged as a series of 4f systems, 
which, although not being strictly correct, proves to be a satisfactory assumption. 

Table 1. Parameters of the numerical simulation. Most of symbols are defined in Fig. 4; 
ΔλMAX stands for maximum spectral width (wavelength width) and NAOB2 indicates 

numerical aperture of the objective lens OB2. 

Parameter Value 
λ0 790nm 
ΔλMAX 250nm 
NAOB2 0.11 
fOB1 9mm 
fOB2 18mm 
f1 53.5mm 
f2 75mm 
Optical fiber Single mode fiber Corning HI 780 (MFD = 5.5μm) 

2.3 Calculation of light scattered by the sample 

We consider the sample to be composed of the microfluidic chip possibly with a blood cell 
present within the microchannel. The PSTD method calculates how light is scattered by the 
refractive index distribution ( )sn r  by partitioning the computational space into cubic cells of 
side λ0/6 (PSTD cells). All six components of the electromagnetic field are sampled once for 
each cell. The PSTD simulation employed a total of 150×150×1500 cells in the computational 
grid and a perfectly matched layer (PML), as proposed by Berenger [38], of 10 cells was 
positioned around the grid. A time step of 20.4 fs was employed requiring a total of 10000 
iterations to complete the simulation. The transverse size of the computational grid (150×150 
cells) was chosen to ensure that the magnitude of the incident beam, ) ,,| ( |i b ke r  did not 
exceed 1% of its peak at the transverse plane in which it is introduced, ensuring an 
appropriate tradeoff between computation time and accuracy [23]. The axial extent of the 
computational grid was chosen to ensure that A-scans are simulated to an experimentally 
relevant depth, as shown in Figs. 1(c)–1(d). 

A limitation of the PSTD method is that scatterers must be constructed using a so-called 
staircase approximation of the cubic cells making up the computational grid. This can be 
problematic when trying to model objects with dimensions of only a few PSTD cells. The 
TiO2 scatterers and the WBC granules, both assumed to be spherical with diameters of 350nm 
and 300nm, respectively, were difficult to model using the PSTD cell size of λ0/6 = 131.7nm. 
Figure 5(c) shows, arguably, the simplest staircase approximation to spheres of diameter 300 
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and 350 nm. It is obtained by choosing only PSTD cells with a center contained within the 
surface of the sphere to be approximated and setting n3 to be equal to the refractive index of 
the sphere to be modelled. However, this shape with n3 = 2.52 underestimates the scattering 
cross-section of the TiO2 spheres, yet is appropriate for the granules contained within the 
WBCs, as is shown in Fig. 5(d). To rectify this problem for the TiO2 spheres, a modified 
staircase approximation was employed as shown in Fig. 5(a), which, relative to the shape in 
Fig. 5(c), has an additional four cells colored blue (refractive index n1 = 2.52) and an 
additional eight yellow cells (refractive index n2). The value of n2 was set according to 

2 0 1 0Δ(+ )n n n n= −  where n0 = 1.41 is the refractive index of the PDMS medium in which 
the TiO2 spheres are embedded and n1 = 2.52 is the refractive index of the spheres. The value 
of Δ = 0.9414 was obtained, as shown in Fig. 5(b), using the PSTD method to match the 
scattering cross-section of the modified staircase approximation to that of a sphere (diameter 
350nm) according to Mie theory. As has been pointed out previously [23], this method of 
scatterer design neglects the angular distribution of scattering. We have plotted the magnitude 
of the scattered electric field for discrete and spherical scatterers in Fig. 6 in order to illustrate 
the discrepancy between the two cases. It is clear from these plots that there is a discrepancy 
between the profiles of the scattered field, the resolution of which is an important subject of 
future work. 

A similar calculation was performed for the WBC granules. The granules and cytoplasm 
were assumed to have refractive indices of ng = 1.58 and nc = 1.36, respectively (see Section 
2.1). The simulations plotted in Fig. 5(d) confirm that the 7-cell shape in Fig. 5(c) results in a 
scattering cross-section very close to that of a sphere for n3 between nc and 1.6. This means 
that n3 = ng results in the granules being accurately represented by the shape in Fig. 5(c). 

 

Fig. 5. Rendering of the staircase approximation to the TiO2 (a) and WBC granule (c), the 
result of simulations used to calculate the required value of Δ for modelling the TiO2 scatterers 
(b) and verification (d) that the granules are well represented by the shape in (c) for n3 ranging 
between nc and 1.6. 

 

Fig. 6. Rendering of the magnitude of electric field scattered by the discretized approximation 
to the TiO2 spheres using the PSTD method (a), and that of an ideal TiO2 sphere using Mie 
theory (b) for a plane wave polarized in the x-direction and propagating the z-direction. The 
field is normalized by the magnitude of the incident plane wave. 
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The staircase representations of the TiO2 spheres and granules were combined with that of 
the other refractive index variations resulting in a model representing the WBC, RBC and 
microfluidic chip. The discrete representations of TiO2 spheres, granules and nucleus lobes 
were arranged randomly in a non-overlapping fashion within the appropriate model sub-
volumes. Only the refractive index of PSTD cells representing the RBC and WBC varied 
between simulations. A-scans were simulated for varying transverse blood cell positions, 
differing by integer multiples of the width of a single PSTD cell, i.e., each blood cell was 
approximated by a fixed staircase approximation that was rigidly translated through the 
computational space. For a given discrete refractive index distribution (i.e., scattering 
geometry), the PSTD simulation executes by introducing the incident illumination through a 
time-varying magnetic current density of the form [39]: 

 ( ) ( ) ( )( ) ( )( )( ){ }2

0 0 0 0, exp exp / ,ˆ
i bt k i t t t t Wω π= − × − − − −R*J k e r  (3) 

where k0 is the central wavenumber, ω0 is the central angular frequency, k̂  is the unit vector 
aligned with the optical axis, t0 ensures that the value of )0(*J  is vanishingly small and W 
controls the temporal width of the incident pulse and therefore the spectral width of the 
simulation. 

2.4 Calculation of light coupled into the optical fiber 

The PSTD method allows for the light scattered back towards lens OB2 (see Fig. 4) to be 
calculated on a transverse plane in the vicinity of the focus of OB2, as illustrated in 
component 3 of Fig. 2. Supposing that scattered field, ( , ),sc b ke r  is known on this plane, we 
have previously shown [26] that the coupling of this scattered light into the fiber used to 
illuminate the sample can be rigorously evaluated as: 

 ( ) ( )( ) ( )( )2
, , d d ,sc sc b i b bx byk T k T k r rα = ⋅ e r e r  (4) 

where ( , , )b bx by bzr r r=r  and ( )sc kα  is the modal coefficient of the light coupled into the 
optical fiber. We note that since ( )sc kα  is required to be calculated for a large number of 
values of k, it is desirable to evaluate Eq. (4) as the PSTD simulation progresses, rather than 
storing ( , )sc b ke r  in computer memory for each value of k. This is achieved by recognizing 
that ( , )sc b ke r  is evaluated from its time domain form, ( , ),sc b te r  as the PSTD simulation 
progresses according to: ( ) ( ) ( )1

0
, , Δ exp Δ /tN

sc b sc b tn
k n t ikcn t N

−

=
=e r e r  where ∆t is the time 

step and tN  is the total number of time steps employed by the PSTD simulation. It is then 
easy to see how the summation over the time step n can be moved outside of the integral in 
Eq. (4), allowing ( )sc kα  to be evaluated for a range of values of k without needing to store 
each ( , ).sc b ke r  

2.5 OCT reconstruction 

Once ( )sc kα  is evaluated for a particular scattering geometry, the OCT A-scan can be 
evaluated according to: 

 ( ) ( ) ( ) ( ) ( )( ) ( )2

ref ref0
exp 2 d 1/ ,sc refI z z S k k k ik z zα α λ

∞
− = + −  (5) 

where ( )ref kα  is the modal coefficient of reference arm light simulated in the same way as 
( ),sc kα  except that a mirror at location zref is modelled as the sample and ( )S k  is the 

effective system spectrum. 

2.6 Differential parameters 

Differential parameters are obtained as is described in reference [19] for experimental data. 
Both magnitude-based and phase-based differential parameters employed in this study are 
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calculated for experimentally acquired and simulated M-scan ROIs (regions of interest; 43μm 
high for the magnitude data and 27μm high for the phase data) which are wide enough to 
horizontally cover the signal of interest. The axial position of the ROI remains constant for 
RBCs and WBCs, for both the simulated and experimental data. 

This section summarizes the differential parameters employed in the comparative 
quantitative analysis presented in Section 3.3. Differential parameters are collated in Table 2, 
of which the differential parameters: 1–2 and 4–5 were previously described in [19]. For 
clarity we provide a mathematical definition of differential parameter 5 (Phase 
2DFT/Contrast Top-Middle) to supplement the description given in [19]. This parameter is 
evaluated by first performing a two-dimensional discrete Fourier transform of the phase 
gradient ROIs depicted in Fig. 7 which results in a matrix with elements [aij] and dimension 
Nv × Nh, where we assume that Nv and Nh are both even, for simplicity. The Phase 2DFT 
differential parameter is then found as: 

 ( ) ( )/ 2 1 / 2 / 2 1

1 1 1 1
| | / | | ,

/ 2 1
h v h thresh

thresh

N N N Nthresh
ij ijj i N j i

v thresh

N
a a

N N

+ +

= = + = =

 
 − + 

     (6) 

where Nthresh is an integer set such that |Nthresh/(Nv/2-Nthresh)-3| is minimized. 
It is difficult to obtain absolute quantitative agreement between differential parameters 

originating from experimental and simulated data sets. The reasons for this are explained in 
detail in Section 4, however, it is essentially due to imperfect knowledge of experimental 
conditions, or, an inability to precisely model them. Despite this, the simulation successfully 
replicates the relative separation of differential parameters corresponding with RBCs and 
WBCs. Thus, in order to compare differential parameters originating from experimental and 
simulated data, the simulated values in Section 3.3 are scaled to bring the mean of WBC and 
RBC values into relative agreement with the corresponding experimental means. In particular, 
the mean of the differential parameter values for both RBCs and WBCs combined was 
calculated for the experimental and simulated cases, resulting in a single scaling factor for 
each differential parameter. We also emphasize that only differential parameters 1 and 5 were 
scaled in this manner and that the same scaling factor is applied to both the WBC and RBC 
differential parameters. We developed a new magnitude-based unitless differential parameter 
(parameter 3) which does not require scaling. It is denoted as Speckle contrast, ,ROIC  and is 
defined as: 

 ,s
ROI

s

C
m

σ
=  (7) 

where sσ  is the standard deviation of the signal magnitude and sm  is the mean value of the 
signal magnitude, both calculated for the selected ROIs. 

Table 2. Differential parameters. 

Magnitude-based differential parameters Phase-based differential parameters 
No. Differential parameter No. Differential parameter 
1 Standard deviations (a.u.) 4 Standard deviations (rad) 
2 Axial (vertical) speckle size (μm) 5 Phase 2DFT (Contrast Top-Middlea) (a.u.) 
3 Speckle contrast (‒) 6 Slope (‒) 

aThe identifier of Phase 2DFT differential parameter used in [19]. 

Additionally, we introduce differential parameter 6 to emphasize the difference between 
RBC and WBC signals observed in phase gradient M-scans (see Section 3.2 for definition), 
which is partially based on previously introduced differential parameter 4. Figure 7 
demonstrates how the Slope is calculated, based on four examples, which refer to different 
ROIs selected from the phase gradient M-scans shown in Section 3.2. The plots shown in 
Figs. 7(a)–7(b) present horizontal (lateral) profiles of the corresponding ROIs (the adjacent 
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images) for RBC and WBC signals, respectively. The mean calculated for the values 
indicated by the black frame (two A-scans wide and 27μm high) on the phase gradient ROI in 
Fig. 7(a), is used as the first or last sample shown in the plot on the left. Subsequent samples 
are obtained for different positions of this frame, shifted line by line until reaching the right 
limit of the ROI. The slope (tangent of angle of inclination; the angle is provided in radians) 
of the fitted line in the plot (blue color) is the value of the Slope differential parameter. 
Figures 7(c)–7(d) show the profiles, plus linear fits, and the corresponding phase gradient 
ROIs for simulated RBC and WBC signals, respectively. The Slope parameter measures the 
differences in transverse phase gradient contrast between RBC and WBC signals for both 
simulated and experimental data. The transverse phase contrast can be observed in the phase 
gradient ROIs in Fig. 7 and is due to the shape of the measured cell. 

 

Fig. 7. Plots of the phase-based differential parameter Slope; a) a horizontal profile through the 
experimentally acquired RBC signal; the blue line indicates a linear fit; b) a profile through the 
WBC signal plus linear fit; (c-d) simulated RBC and WBC profiles with linear fits. The black 
frame on the phase gradient ROI shown in (a) indicates the values used to calculate the first or 
last sample in the plot on the left. The label ‘Phase mean’ in the plots refers to the mean, taken 
over a rectangular frame, of phase gradient calculated for different positions of the frame. 

3. Results 

Each A-scan evaluated using the full-wave model required approximately 13 hours to 
compute using a 12-core Intel Xeon CPU (E5-2670 v3, 2.30GHz) and approximately 4Gb of 
RAM. Since the full M-scan simulation contains 407 A-scans, one for each sampled position 
of the blood cells relative to the optical axis, we utilized the Pawsey Supercomputing Centre’s 
Magnus, a Cray XC40 series supercomputer with 1488 nodes, each containing two CPUs (as 
specified above) and 64 GB RAM. 

3.1 Simulated electric field distribution 

Four different scattering geometries are considered: the homogeneous case of water only (Fig. 
8(a)), the microchannel without a blood cell (Fig. 8(c)), the microchannel with a RBC (Fig. 
9(a)) and the microchannel with a WBC (Fig. 9(c)). In each case, the magnitude of the x-
component of the electric field, |Ex|, is plotted. The color in each of Fig. 8(a), Fig. 8(c), Fig. 
9(a) and Fig. 9(c) represents an index into a global list of refractive indices given as: 1.33, 
1.41, 1.36, 1.5, 1.58, 2.455 and 2.52. Where available, the refractive index values are 
provided at λ0 = 790nm. The scattering geometries are plotted in the x-z plane containing the 
optical axis. Field quantities are plotted either in this plane, or in x-y planes spaced about the 
beam’s focus. In particular, the plane z = −40μm refers to the x-y plane located 40μm before 
focus. For reference, the scattering geometry of Fig. 8(c) is common to all of the 407 A-scans 
simulated to construct Fig. 10. The first and last of these A-scans used precisely this 
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scattering geometry. A-scan numbers 106 and 290, in Fig. 10, used the scattering geometries 
of Fig. 9(a) and Fig. 9(c) respectively. 

Figure 8(b) shows a plot of |Ex| for the beam focused in water only. The top row of Fig. 
8(e) shows |Ex| at five transverse planes spaced about the beam’s focus, again in water only. 
These plots are useful for comparison with subsequent plots where scatterers have been 
included (Fig. 9). All values of |Ex| are normalized by the peak value of |Ex| in the case of 
water only. Accordingly, the maximum value of |Ex| in Fig. 8(b) and the top row of Fig. 8(e) 
is 1. Figure 8(d) shows |Ex| for the case with microfluidic chip in place. The peak value of |Ex| 
exceeds that of the homogeneous case due to constructive interference of light scattered by 
the TiO2 particles. The attenuation of the beam is readily observed in this plot. Plots of |Ex| in 
transverse planes are shown in the lower row of Fig. 8(e). These plots show a weak 
backscattered field (z = −40μm and −20μm) and beam which becomes increasingly perturbed 
as z increases (z = 0μm, 20μm and 70μm). 

 

Fig. 8. Plots of the magnitude of the x-component of electric field, |Ex|; the plots shown in (a-
d) are plotted in x-z plane containing the optical axis; a) the 3D homogeneous geometry for 
water only; b) a plot of |Ex| for the case presented in (a); c) the scattering geometry for the 
empty microchannel; d) a plot of |Ex| for the case presented in (c); e) plots of |Ex| in x-y planes 
spaced about the beam’s focus: the top row of images shows the plots associated with (a-b), 
and the lower shows those associated with (c-d). 

Figure 9 represents the case where blood cells are included within the microchannel. In 
particular, Fig. 9(a) and Fig. 9(c) show how the refractive index distributions change when 
the RBC and WBC, respectively, are included in the microchannel. Figure 9(b) and the top 
row of images in Fig. 9(e) show the field distribution when the RBC is included. The 
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scattering geometry in Fig. 9(a) is slightly idealized since the RBC is centered upon the 
optical axis, leading to the highly symmetrical field structure in Fig. 9(b), immediately after 
the RBC. Figure 9(d) and the lower row of images in Fig. 9(e) show the field distribution 
when the WBC is included. The field plots show that the WBC scatters the field significantly 
more than the RBC. 

 

Fig. 9. Magnitude plots of the x-component of electric field, |Ex|, for the cases of an RBC and 
WBC present in the microchannel; the plots shown in (a-d) are plotted in x-z plane containing 
the optical axis; a) the scattering geometry for the RBC included in the microchannel; b) a plot 
of |Ex| for the case (a); (c-d) the plots corresponding to (a-b) but with a WBC in the 
microchannel; e) plots of |Ex| in x-y planes: the top row of images for the RBC case (i.e., a-b), 
and the lower row corresponds to the WBC case (i.e., c-d). 

3.2 Comparison of simulated and experimentally acquired OCT images 

This section contains several examples of simulated and experimentally acquired M-scans. 
For brevity, in what follows, we abbreviate “experimentally acquired M-scans” as 
“experimental M-scans”. Figure 10(a) shows the magnitude of a simulated OCT M-scan (we 
define this M-scan as “magnitude M-scan”) obtained as a result of computing 407 A-scans for 
a set of 407 scattering geometries, which together represent the movement of cells through 
the microchannel. Note that the horizontal speckle line visible in Fig. 10(a), around z = 
185μm, and the corresponding effect noticeable at the same depth in Fig. 10(c), is due to an 
erroneous reflection from the PML. This erroneous reflection occurs because field quantities 
and material properties have only a finite spatial sampling and can be reduced by reducing the 
PSTD cell dimension [38]. M-scans presented in Figs. 10(b)–10(c) represent the difference 
between the complex valued A-scans for the cases with and without cells. Figure 10(b) is the 
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differential magnitude M-scan, i.e. the magnitude of complex valued M-scan (Fig. 10(a)) after 
subtracting the constant signal originating from TiO2-PDMS layer (Fig. 4(b) in the reference 
[19] depicts the procedure of background subtraction). Figure 10(c) is the phase gradient M-
scan which is constructed across the lateral (transverse) direction, so that the ith A-scan of the 
phase gradient M-scan is obtained by subtracting phase of the (i-1)th raw, complex valued, A-
scan (including background) from that of the ith. The phase gradient M-scan is represented on 
a divergent, or bipolar, colormap which represents negative phase values by blue, zero with 
white and positive values with red. Characteristic speckle fields are observed in all images 
beneath the signal associated with each cell localized in the microchannel (the left signal 
comes from RBC and the right one from WBC). This is because a cell in the microchannel 
perturbs both the light incident upon the substrate and the light scattered back by the substrate 
before reaching the detection fiber. For a fixed illumination beam (M-scan mode), this signal 
perturbation is clearly visible on the static background as a perturbed, or new, speckle pattern 
in both the magnitude and phase gradient M-scans. Moreover, this perturbation results in a 
marked visual difference between the simulated signals in Fig. 10. This difference is visually 
evident also in the experimentally acquired OCT images shown in Fig. 11, Fig. 12 as well as 
Fig. 13, and is due to the differing scattering properties of the cells presented in Fig. 9. 

 

Fig. 10. a) Simulated magnitude M-scans constructed from 407 A-scans; b) the M-scan from 
(a) with static background subtracted (differential magnitude M-scan); c) phase gradient M-
scan based on complex M-scan shown as magnitude in (a). The left signal of interest in all M-
scans refers to the RBC, while the right one to the WBC. 

Figure 11 and Fig. 12 show a comparison of simulated and experimental magnitude M-
scans for two different experimental data sets: data set 1 and data set 2, respectively; all M-
scans in each figure depict 200μm of the sample depth. Both experimental data sets were 
adopted from our previous study [19] and refer to different experimental measurements 
conducted by means of the OCT setup with LSM02-BB objective lens (see Table 1 in the 
reference [19]). The same simulated data set is considered in both figures. The sampling rate 
of the position of blood cells in the microchannel for the experimental case depends on the 
velocity of flowing cells and the parameters of the spectrometer camera. Because the 
simulation sampling rate exceeds the experimental one, all simulated M-scans used in the 
comparative study (Fig. 11, Fig. 12, Fig. 13 and Fig. 14) are constructed by choosing every 
4th A-scan from the set of 407 shown in Fig. 10, giving 102 A-scans per M-scan. 
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Fig. 11. Comparison of simulated and experimental M-scans for data set 1; a) a simulated 
magnitude M-scan; b) the M-scan from (a) with background subtracted; c) an experimental M-
scan created by fusing two independent M-scans (the top image shows a part of M-scan 
including a signal coming from the WBC and the lower image shows a signal derived from the 
RBC); d) the M-scans from (c) with background subtracted; e) the simulated M-scan from (a) 
divided by its dynamic range and with white noise, of standard deviation taken from (g), 
added; f) the simulated M-scan from (b) processed in the same way as (e) with noise derived 
from (h); g) the experimental M-scan from (c), divided by its dynamic range; h) the 
experimental M-scan from (d) processed in the same way as (g). 

The simulated M-scans (the magnitude and differential magnitude M-scans) shown in 
Figs. 11(a)–11(b) are displayed on a logarithmic scale such that the peak OCT signal in the 
simulated image corresponds to the peak value of the signal-to-noise ratio (SNR) in the 
experimental images (38dB), presented in Figs. 11(c)–11(d). The simulated and experimental 
images differ significantly in terms of the noise level. In particular, the simulated images are 
free of noise. Therefore, the magnitude M-scans shown in Figs. 11(a)–11(d) were modified by 
dividing by their respective dynamic ranges (DR) [40], and the simulated complex valued M-
scans shown as magnitude in Figs. 11(e)–11(f) had complex white noise added, with standard 
deviation values sampled from the modified (DR corrected) experimental intensity M-scans 
depicted as magnitudes in Figs. 11(g)–11(h). In particular, the standard deviation of complex 
valued noise added to the simulated complex M-scan shown as magnitude in Fig. 11(e) was 
obtained from the experimental intensity M-scan presented as magnitude in Fig. 11(g), for a 
specially selected M-scan ROI which includes the noise signal. The above analysis is based 
upon our previous treatment [40]. The image set shown in Fig. 12 is presented in the same 
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way as the set shown in Fig. 11 for images obtained from data set 2. Note that the 
experimental M-scans from each data set have different SNR levels, which affects data 
processing and the final result. Figure 11 and Fig. 12 show that the signal attenuates faster for 
simulated images than for their experimental counterparts, even if noised simulated images 
are considered. 

The influence of the noise on the phase gradient M-scan quality is clearly visible in Fig. 
13, which presents a comparison of simulated and experimental phase gradient M-scans. The 
top signal of interest in each phase gradient M-scan in this figure is derived from the WBC, 
while the lower one corresponds to the RBC. Fig. 13(a) shows a simulated phase gradient M-
scan derived from the simulated M-scan depicted in the magnitude plot in Fig. 11(a). The 
experimental phase gradient M-scan obtained from data set 1 is depicted in Fig. 13(b). The 
simulated phase gradient M-scan (with noise added) is shown in Fig. 13(c) to justify the loss 
of quality observed in experimental phase gradient M-scans presented in Fig. 13(b) and Fig. 
13(d), where the latter one was computed from experimental data set 2. The simulated image 
presented in Fig. 13(c) also indicates faster attenuation of the phase gradient signal in 
comparison to the experimental M-scans shown in Fig. 13(b) and Fig. 13(d). All phase 
gradient M-scans in Fig. 13 are displayed in a way presented in Fig. 10(c), covering the range 
of ± 0.25 radians. Since all phase gradient M-scans in Fig. 13 are computed directly from the 
corresponding complex valued M-scans, presented as a magnitude in Fig. 11 and Fig. 12, they 
also visualize 200μm of the sample depth. 

 

Fig. 12. An identical analysis to that presented in Fig. 11, but for data set 2. All images (a-h) 
directly correspond to that presented in Fig. 11. The SNR for data set 2 is 34dB. 
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Fig. 13. Simulated and experimental phase gradient M-scans; a) a simulated phase gradient M-
scan corresponding with the M-scans depicted in Fig. 11(a) and Fig. 12(a); b) an experimental 
phase gradient M-scan corresponding with the M-scan of Fig. 11(c) (data set 1); c) a simulated 
phase gradient M-scan with noise added, derived directly from data shown as magnitude in 
Fig. 11(e) and Fig. 12(e); d) an experimental phase gradient M-scan corresponding with the M-
scan of Fig. 12(g) (data set 2). 

3.3 Comparative quantitative analysis 

As a validation step we analyzed selected A-scans to quantify the differences in attenuation of 
the signal between simulated and experimental results, observed in Fig. 11 and Fig. 12. The 
A-scans include a 160μm deep TiO2-PDMS section of the sample. Figures 14(a)–14(b) show 
the magnitudes of the A-scans (profiles) through the WBC and RBC centers, for both data set 
2 and data set 1, respectively. Each of the figures depicts four profiles: experimental RBC 
(red line) and WBC (black line) signals, compared with corresponding simulated RBC (green 
line) and WBC (blue line) signals. Each line profile is part of an M-scan shown in Fig. 11 or 
Fig. 11. In particular, the experimental RBC profile of Fig. 14(a) is derived from the M-scan 
depicted in Fig. 14(e), while the simulated RBC profile is derived from the M-scan depicted 
in Fig. 14(f). Figs. 14(c)–14(d) compare experimental and simulated A-scans due to the TiO2-
PDMS layer, in the absence of cells, for the two data sets. Each of the experimental profiles, 
shown as orange lines in Fig. 14(c)–14(d) and depicted in Figs. 14(g)–14(h), were calculated 
by averaging 16 neighboring A-scans. The simulated profile in each plot (brown) corresponds 
to the first and last A-scans (which are identical) shown in Fig. 11(a) and Fig. 12(a) and is 
depicted in Fig. 14(i). 

In order to show the potential of our technique to differentiate cells we considered two-
dimensional scatter plots of various sampled differential parameter values originating from 
both experimental data sets, and both types of blood cell in the microchannel (the RBCs or 
WBCs). We compared these differential parameters with simulated values, as shown in Fig. 
15. In each plot, experimental measurements for RBCs and WBCs are indicated by red dots 
and black dots, respectively, while the simulated values are indicated by a green dot for the 
RBC and by a dark blue dot in case of the WBC. Differential parameters presented in Fig. 15 
are described in Section 2.6, where we also explain why some of the differential parameter 
values are scaled. The scaling factors are provided in parentheses in the caption of Fig. 15. 
Each plot in Fig. 15 corresponds to a different combination of two differential parameters 
taken from those collated in Table 2. Each differential parameter is calculated for M-scan 
ROIs with an upper limit located 68μm below the microchannel (for both experimental and 
synthetic data). This value corresponds to the axial position of the ROIs considered in our 
previous study [19] and was obtained experimentally. 
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Fig. 14. Illustration of the attenuation of the OCT signal (magnitude); all plots and images are 
presented in decibel scale; a) profiles (A-scans) through the signals of interest for: 
experimental RBC (red line, depicted as an image in (e), data set 2), experimental WBC (black 
line, data set 2), simulated RBC (green line, also depicted in (f)) and simulated WBC (blue 
line). The dashed lines (magenta) indicate the SNR level for data set 2 (34dB); b) the 
corresponding profiles for data set 1 (SNR 38dB); (c-d) the profiles through the TiO2-PDMS 
layer in the absence of cells: experimental (orange lines, shown as the images in (g-h)), for 
experimental data set 2 (c) and data set 1 (d), and simulated profiles (brown lines) also 
depicted in (i). The vertical lines in images (e-f) indicate the origin of the associated profile 
plots. 

 

Fig. 15. Two-dimensional scatter plots of differential parameter values for RBC (red dots) and 
WBC (black dots) signals of interest combined with simulated differential parameter values 
(green dot: RBC, dark blue dot: WBC). Experimental values shown in (b) and (d) were 
calculated for experimental data set 1, while the remainder of the plots were calculated using 
data set 2; a) Speckle contrast [‒] (not scaled) vs. Standard deviations (magnitude) [a.u.] 
(×235); b) Speckle contrast [‒] (not scaled) vs. Standard deviations (magnitude) [a.u.] (×247); 
(c-d) Speckle contrast [‒] vs. Slope [‒] (both not scaled); e) Speckle contrast [‒] (not scaled) 
vs. Phase 2DFT [a.u.] (×2.2); f) Axial (vertical) speckle size [μm] vs. Standard deviations 
(phase) [rad] (both not scaled). The scaling factors are provided in parentheses. 
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The plots presented in Fig. 15 reveal that the separation of differential parameter values is 
largely superior for simulated differential parameters, which we believe results from the 
idealized blood cell optical models and imaging conditions as considered further in Section 4. 
Moreover, Fig. 15(f) shows that differential parameters: Axial (vertical) speckle size and 
phase-based Standard deviations, are not confirmed by the simulated results. The identifier 
“Standard deviations” is due to standard deviation calculated several times for different 
sections of the ROI [19]. 

Figure 16 presents differential parameters calculated for different axial positions of the 
ROI. The analysis was performed for the simulated and exemplar experimental data derived 
from data set 2. The plots in Fig. 16 demonstrate the sensitivity of differential parameters 
collated in Table 2, with respect to ROI position. The left frame in this figure includes the 
plots of magnitude-based differential parameters, while the right one includes the plots of 
phase-based differential parameters. The left column in each frame contains simulated results 
and the right one includes experimental results. The red line in each plot indicates differential 
parameters obtained for the RBC signals, while the black line corresponds to the WBCs. 

 

Fig. 16. Plots illustrating the sensitivity of the differential parameters to axial position of the 
ROI, calculated for simulated (the left column in each frame) and exemplar experimental data 
(the right columns), which consists of 130 RBC signals and 130 WBC signals, derived from 
experimental data set 2. The parameter values shown in row (b) in the left frame are presented 
in logarithmic scale. The red line in each plot indicates differential parameters obtained for the 
RBC signals, while the black line corresponds to the WBCs. 

The analysis shown in Fig. 16 allows us to choose the most reliable differential 
parameters in terms of effective differentiation. In particular, the most stable differential 
parameters with respect to the axial position of the ROI are: magnitude-based Speckle 
contrast and Standard deviations, as well as phase-based Slope. These differential parameters 
are also the most effective in differentiating between cells. Figure 16 also reveals some 
discrepancies between simulation and experiment. A discrepancy in the magnitude-based 
differential parameters, corresponding to WBCs, can be observed in Figs. 16(b)–16(c). In 
particular, the WBC magnitude signal is attenuated more rapidly in simulation than in 
experiment. Moreover, the speckle size is noticeably different between simulated and 
experimental results for WBC signals. We believe that this is due to the sub-optimal 
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refractive index distribution model of the WBC and possibly the TiO2 scatterers. In particular, 
the TiO2 scatterers match only scattering cross-section, but not the direction of scattering. 
This issue will be addressed in future work. Furthermore, the WBC refractive index model is 
obtained by combining several sources of data. To the best of our knowledge, such a rigorous 
theoretical validation of the optical properties of WBCs has not previously been performed. 
There are also some discrepancies in the phase-based differential parameters shown in Figs. 
16(e)–16(f). We believe this is due to pixels in the complex OCT data being set to zero when 
their SNR is less than a defined threshold. This is performed as it leads to a reduction in noise 
in the experimentally acquired phase gradient M-scans. This has the effect of reducing the 
standard deviation phase, yet maintaining the mean phase. This can be understood by noting 
that this step essentially transforms the distribution of pixel phase values, of those with a low 
SNR, from a Gaussian with zero mean to one where the only possible value is 0. This 
discrepancy is not observed for the Slope differential parameter, shown in Fig. 16(d), since it 
is obtained using a line of best fit, which remains unaffected by thresholding due to the same 
reason that the mean is unaffected. 

4. Discussion and conclusion 

We applied a rigorous, full-wave, model of OCT image formation to an experimental, 
microfluidic chip based, biological micro-objects differentiation technique. We explained the 
components of the image formation model and presented example data resulting from each 
component of the model. This is the first instance, to our knowledge, that a model of this 
degree of realism has been applied to validating experimental OCT images of medical or 
biological significance. Additionally, as far as we know, the examples of modelling blood 
cell’s scattering properties measured by the OCT system have not yet been presented. A 
particularly novel aspect of the model is the generation of optical models, i.e., refractive index 
distributions, for erythrocytes and leukocytes and the simulation of the OCT image of these 
cell models. We simulated M-scans for such erythrocytes and leukocytes flowing through the 
microfluidic chip and compared the result with experimentally obtained M-scans. Differential 
parameters were extracted from experimental and simulated M-scans. Moreover, there was 
relative quantitative agreement between the differential parameters obtained from 
experimental and simulated M-scans in the sense that the relative magnitudes of the 
differential parameters agree for the experimental and simulated cases. We believe that 
refinement of the model will allow for absolute quantitative agreement, which remains one of 
the foci of future work. 

The model still possesses some weaknesses which require further investigation. First, the 
axial attenuation of the signal observed in simulated M-scans is greater than in case of 
experimental M-scans. The analysis presented in Section 3.3 outlines this discrepancy 
quantitatively. Second, the simulated lateral speckle size is significantly lower when 
measured for the signal derived from the WBC than obtained from the RBC. This is not the 
case for experimental results since no significant difference was measured between WBC and 
RBC signals. 

We performed a number of additional simulations to ascertain the cause of the 
discrepancies mentioned above. In particular, we varied the effective spectral width of the 
simulation and found that, as expected, reducing the spectral width leads to an increase in 
both vertical and horizontal speckle sizes. However, reducing the spectral width within the 
range of plausible values is insufficient to bring the simulated lateral speckle size into 
agreement with experiment, even though the axial speckle size approximately agrees with 
experiment. We varied the position of the axial focus of the objective to check whether this 
was influencing the greater axial attenuation of the simulated M-scans. These simulations 
confirmed that the axial position of the focus has only a negligible effect on the axial 
attenuation observed in the simulated M-scans. Individual scatterers were designed, via 
simulation, to match the scattering cross-sections of the assumed spherical scatterers. We thus 

                                                                              Vol. 8, No. 8 | 1 Aug 2017 | BIOMEDICAL OPTICS EXPRESS 3625 



believe that scatterer representation is not the cause of the higher simulated axial attenuation. 
The diameter of TiO2 scatterers used in the experiment is, however, not known precisely, and 
these simulations suggest that the previously assumed diameter of 350nm may be incorrect. 
The proportion by mass of the TiO2, relative to PDMS, is known. Mie theory based 
calculations show that, at a fixed proportion by mass, a lower scattering coefficient can be 
obtained if the diameter of the TiO2 is reduced below 275nm. Therefore, improved estimation 
of the diameter of the TiO2 scatterers is an important aspect of future work. 

In this work we model two single blood cells as the examples of RBCs and WBCs. 
Although a single RBC model seems to be sufficient to represent the population of normal 
erythrocytes, the neutrophil model represents only one of five leukocyte subpopulations 
appearing in human blood [1]. Thus, modeling other WBCs, such as lymphocyte and 
monocyte, is another important aspect of our future work, as well as refining the neutrophil 
model by, for example, changing its diameter, the number of nucleus lobes or refractive index 
contrast between intracellular components, regardless of the refractive index values reported 
in the literature. Furthermore, since the locations and orientations of the RBC and WBC 
models were idealized, parametric studies, including varying positions, orientations 
(including rotation), mechanical deformation and sizes, are also considered for further 
investigation. 
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