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Abstract: Optical coherence tomography (OCT) has become one of the most successful 
optical technologies implemented in medicine and clinical practice mostly due to the 
possibility of non-invasive and non-contact imaging by detecting back-scattered light. OCT 
has gone through a tremendous development over the past 25 years. From its initial inception 
in 1991 [Science 254, 1178 (1991)] it has become an indispensable medical imaging 
technology in ophthalmology. Also in fields like cardiology and gastro-enterology the 
technology is envisioned to become a standard of care. A key contributor to the success of 
OCT has been the sensitivity and speed advantage offered by Fourier domain OCT. In this 
review paper the development of FD-OCT will be revisited, providing a single 
comprehensive framework to derive the sensitivity advantage of both SD- and SS-OCT. We 
point out the key aspects of the physics and the technology that has enabled a more than 2 
orders of magnitude increase in sensitivity, and as a consequence an increase in the imaging 
speed without loss of image quality. This speed increase provided a paradigm shift from point 
sampling to comprehensive 3D in vivo imaging, whose clinical impact is still actively 
explored by a large number of researchers worldwide. 
© 2017 Optical Society of America 
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1. Introduction 

Optical Coherence Tomography (OCT) is analogous to ultrasound imaging, where a sound 
pulse is launched and the reflections (echoes) are measured to create an image of tissue. In 
OCT light reflections are measured by a Michelson interferometer, using the low coherence 
properties of a broadband light source: only light that has traveled approximately the same 
distance in the two arms of the interferometer to within the coherence length of the source is 
able to create interference fringes. By measuring this interference, the location and strength of 
the reflections can be determined. In its original inception, depth profiles (A-lines) of the 
tissue were acquired by scanning the length of the reference arm to map out the tissue 
reflectivity. This approach has been retrospectively named Time Domain OCT (TD-OCT). 
Although historically names for the different techniques have been used interchangeably, we 
used the following nomenclature for this review. The alternative approach to TD-OCT, and 
the topic of this review paper, is named Fourier Domain OCT (FD-OCT). Fourier domain 
OCT detection can in principle be performed in two ways: either by using a spectrometer 
(called Spectral Domain OCT or spectral OCT) or by using a rapidly tunable laser (called 
Swept Source OCT or Optical Frequency Domain Imaging). Both approaches have in comon 
that the reflectivity along a depth profile is measured for a multitude of wavelengths 
separately. For a single wavelength, the reflectivity of a sample is determined by the 
periodicity of the refractive index modulation along the beam, in analogy with e.g., a fiber 
Bragg grating [2]. A single wavelength provides information on the strength of the periodic 
refractive index modulation (Fourier component) along the beam with a periodicity 
determined by the wavevector 2 /k π λ= , with λ  the wavelength. By combining the 
information of a multitude of wavelengths, a depth profile can be created by a Fourier 
transformation of the reflectivity as a function of wavevector, thus the name Fourier Domain 
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OCT. Two dominant implementations of FD-OCT have emerged over the past 15-20 years: 
Spectral Domain OCT (SD-OCT), where the wavelength dependent reflectivity is measured 
using a broad band light source and a spectrometer, and Swept Source OCT (SS-OCT), also 
called Optical Frequency Domain Imaging (OFDI), where the wavelength dependent 
reflectivity is measured with a single (balanced) detector, and where a narrow band light 
source is rapidly tuned over a large optical bandwidth. Both implementations have in 
common that the wavelength dependent reflectivity is determined, and a depth profile is 
obtained by a Fourier transformation. 

The key feature of FD-OCT over TD-OCT is the improved sensitivity, which will be 
discussed in more detail and with mathematical rigor in the next section. An in depth analysis 
reveals that the improved sensitivity is not a consequence of an increase of the signal, but 
follows from a fundamental reduction of the noise, which leads to the significant Signal to 
Noise Ratio (SNR) improvement. Although it has been argued that the SNR improvement 
follows from the feature that FD-OCT measures a full depth profile in a single shot, this holds 
only for SD-OCT, but not for SS-OCT, where the wavelength dependent reflectivity is 
measured sequentially. Moreover, an implementation that also provided a single shot depth 
profile did not result in an improved SNR [3,4]. Key to the SNR improvement is the detection 
of sample reflectivity as a function of wavelength. The best achievable performance of an 
OCT system is reached in the shot noise limit, meaning that shot noise is the dominant noise 
contribution. In an OCT system one assumes that the sample arm light is orders of magnitude 
weaker than the reference arm, and the shot noise is generated by the reference arm intensity 
only. OCT is an interferometric technique, relying on the detection of interference of sample 
and reference arm light, and this provides a key insight into the signal formation. Interference 
will only be observed between electromagnetic fields that differ in frequency fΔ  by less than 

the detection bandwidth. In the near IR region for a detection bandwidth of 1 GHz this 
corresponds to optical frequency differences of a few parts per million. Thus, interference is 
only observed for (virtualy) identical wavelengths. In an optimal OCT system, a detector 
should measure only virtually identical wavelengths, since if more wavelengths are present 
(and thus more intensity will fall on the detector), the shot noise will increase. 

The principle of FD-OCT was demonstrated earlier, SD-OCT in 1995 by Fercher et al. [5] 
and SS-OCT between 1997 and 1999 [6–11] however, the sensitivity advantage was not 
recognized nor demonstrated. The first theoretical hints at the sensitivity advantage were 
provided by Andretzky et al. and Mitsui in 1998 [12,13]. Although Andretzky's paper was 
intensely debated at that time and Mitsui's paper was overlooked by the community, the 
results were not generally accepted, partly due to incomplete derivations, a confusion of 
sensitivity with dynamic range, and a lack of solid experimental confirmation. The firm 
establishment and acceptance of FD-OCT as a superior technology over TD-OCT took 
another 5 years and came in 2003, with three papers (Leitgeb et al., de Boer et al., Choma et 
al.) providing both a theoretical derivation and an experimental confirmation of the sensitivity 
advantage of both SD-OCT [14,15] and SS-OCT [16]. It is hard to overstate the impact of 
FD-OCT on the success of OCT as an in vivo medical imaging technology. Image speeds 
increased from the first TD-OCT systems at 2 A-scans/second to speeds up to few millions A-
scan/second using SS-OCT with high speed swept source technology [17]. Such a dramatic 
development (an increase of 6 orders of magnitude in acquisition speed within 25 years) has 
opened new fields of applications and contributed to the success of OCT. 

In this paper we present a general overview of the basics of Fourier Domain OCT method 
and its main advantage of sensitivity improvement, enabling the rapid acquisition rates that 
are necessary to reduce motion artifacts in vivo. In order to illustrate the fundamental 
principles of the method we used examples of ophthalmic imaging, which is currently the 
most evolved application of Fourier Domain OCT. 
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2 2
noiseSNR I σ= . The angle brackets  define ensemble averaging, which in case of 

ergodic signals is equal to the time averaging. Usually SNR is given in decibels as 

[ ] 10*log( )SNR dB SNR= . The sensitivity Σ  is defined as the inverse of the smallest sample 

reflectivity Rs, min, for which the SNR equals 1, i.e., ,min1 sRΣ = . 

In TD-OCT we observe the interference signal at a single axial location or delay at a time. 
Hence, the detection system records at each axial location over the full spectral bandwidth the 
summed power reflected from all depth locations, whereas the actual OCT signal is present 
only within the temporal coherence gate, i.e., the light reflected from a thin tissue slice with a 
thickness corresponding to the coherence length of the source. Thus only a small part of the 
received sample arm light actually contributes to the OCT signal, which fraction is given by 
the ratio of round trip coherence length to the full depth scanning range. 

In FD-OCT only a narrow optical bandwidth corresponding to a long coherence length on 
the order of millimeters is measured by each detector element (SD-OCT) or sequentially in 
time by a single detector element (SS-OCT). Thus, light backscattered from all depth regions 
corresponding to the coherence length interfere with the reference beam at the detector and 
contribute to the spectrally resolved interference pattern. Fourier analysis of the spectrally 
resolved interference pattern obtains the full axial structure in parallel, the recorded signal 
contributes in its entirety to the axial structure. In contrast, for a single detector TD-OCT 
system, the full optical bandwidth reaches a single detector element. Interference will only 
occur between electromagnetic fields of (virtually) the same optical frequency or wavelength. 
The carrier frequency of the interference at this wavelength is given by 2v gf λ= , with v g  

the reference arm mirror (group) velocity [38]. At the same time due to the white noise 
characteristic, the shot-noise generated by the power density at one particular wavelength is 
present at all electronically detected frequencies, and therefore adversely affects the SNR at 
all other carrier frequencies ' 2v 'gf λ=  and consequently wavelengths 'λ  . By spectrally 

dispersing each wavelength to a separate detector in space (SD-OCT) or time (SS-OCT), the 
cross shot-noise term is eliminated in both hybrid and fully parallel SD/SS-OCT systems 
while the full interference signal is preserved [15]. Both SD-OCT and SS-OCT have this key 
feature in common. Altogether, this immediately translates into higher detection sensitivity as 
compared to the case of TD-OCT. 

The above explanation for the sensitivity advantage holds in case photon or shot noise is 
the dominating noise source. For a rigorous mathematical treatment, we also consider excess, 
and receiver noise. To facilitate the noise analysis in the case of SD- and SS-OCT, the signal 
and noise terms will be expressed in number of photo-electrons. The number of photo-
electrons en  is related to the number of incident photons phn  via the conversion factor η  as 

e ph in n P Eνη η τ= = , where P is the total incident power on the detector, vE hν=  is the 

photon energy at optical frequency ν  with h  Planck's constant. For SD-OCT the integration 
time per detector element is iτ , where each detector element detects an optical bandwidth kδ
. For SS-OCT the integration time iτ  needs to be replaced by tΔ , the single detector 

sampling time, where during time interval tΔ  the detector detects an optical bandwidth kδ . 
This results in a spectral interference signal term for SD-OCT, ( )SDI k , per spectral detector 

element for a reflecting surface at location rz  expressed in electron charge given by [14,15], 

 2 cos(2( ) / [) ]i
SD ref sample r

e
P P kz N e

E
I k

ν

η τ=   (1) 

with Pref and Psample the total reference arm and sample arm power integrated over the optical 
bandwidth kΔ  of the source in the detection arm, respectively, N the number of spectral 

                                                                                  Vol. 8, No. 7 | 1 Jul 2017 | BIOMEDICAL OPTICS EXPRESS 3258 



detection channels of width kδ , and where e  is the electron charge. Equation (1) assumes a 
flat constant source spectrum covering a spectral width of k N kδΔ = . 

For SS-OCT the spectral interference signal term, ( )SSI k , per detector sampling time tΔ  

and a reflecting surface at location rz  expressed in electron charge is given by [16,36], 

 2 co( () s 2 ) [ ]SS ref sample r

e t
P P ek kz

E
I

ν

η Δ=   (2) 

with Pref and Psample now determined by the full power of the swept source emitted within the 
optical bandwidth kδ  over time interval tΔ . Noting that for equal A-line rates the detector 
sampling time tΔ  in SS-OCT is equal to the integration time divided by the number of 
detector elements in SD-OCT, it NτΔ =  it is immediately observed that Eqs. (1) and (2) for 

( )SDI k  and ( )SSI k , respectively, are identical. 

 

Fig. 3. Deposited energy at the detector for SD-OCT compared to SS-OCT. A) In SD-OCT the 

total source power sP  is emitted over optical bandwidth kΔ and distributed over N detector 

elements. The energy deposited at a single detector element is given by the fraction k kδ Δ  

of the source power times the integration time iτ , giving an energy ( )SDE kδ  per detector 

element of ( ) /SD s iE k P k kδ τ δ= Δ . B) In SS-OCT the total source power sP is emitted 

over optical bandwidth kδ . The energy deposited at a single detector element is given by the 

total source power sP  times the sampling time tΔ , giving an energy ( )SSE kδ  per 

detector sampling time tΔ  of ( )SS sE k P tδ = Δ . With the relations i N tτ = Δ  and 

k N kδΔ =  the deposited energies within optical bandwidth kδ  are equal, 

( ) ( )SD SSE k E kδ δ= . (reproduced from [39]) 
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Figure 3 illustrates further the relation between the energy detected by each element in 
SD-OCT during integration time iτ  and by the single element in SS-OCT during sampling 

time tΔ . 
The non-interfering term per detection element, also called DC term, is given for SD-OCT 

and SS-OCT, respectivley, by 

 ( ) ( )/ // [ ]i
DC SD ref sample DC SS ref sample

e e t
I P P N I P P e

E Eν ν

η τ η Δ= + = = +   (3) 

In case of TD-OCT we follow a derivation in units photocurrent, and the single detector (N = 
1) reads a signal current, that can be related to the optical power P as /ei Pe Eνη= . The 

interference term for TD-OCT is given by 

 ( )2 cos 2 ( ) ( ) [ ]( ) ref sampleTD r r

e
P P k z zI z z z e s

Eν

η −= − Γ   (4) 

with ( )rz zΓ −  the coherence envelope of the low coherence source. With those definitions 

the SD-OCT, SS-OCT and TD-OCT signal powers can be written in analogy with the 
definition of Sorin and Baney as [40], 

 2

2

2
2

( )( 2 [ ]) ref samplei
SD SD

P Pe
eS I k

E N
k

ν

η τ 
 
 

= =   (5) 

 2

2

2( ) [ ]( 2)SS SS ref sample

e t
I k P eS k P

Eν

η 
 
 

Δ= =   (6) 

 ( )
2

22( ) ( ) 2 [ / ]TD r TD r ref sample
v

e
S z I z P P e s

E

η 
= =  

 
  (7) 

The noise contributions are shot noise and Relative Intensity Noise (RIN), also known as 
Bose Einstein (BE) noise, for SD- SS- and TD-OCT, and CCD detector read-out and dark 
noise for SD-OCT, and thermal noise for SS-OCT and TD-OCT. These noise terms are 
additive on the level of variances. 

The read-out and dark noise for SD-OCT, and thermal noise for SS-OCT and TD-OCT, 
do not depend on the incident optical power. In case of integrating sensors such as CCDs it is 
described by read noise and dark noise in terms of number of electrons. For photocurrent 
detectors, such as PIN diodes, the thermal noise is described per unit bandwidth using noise 
equivalent current. The relation between variances of photo-electrons fluctuations eσ  and 

photo-current fluctuations iσ  is ( )22 21i i eσ τ σ= . 

Shot noise itself describes the signal fluctuation due to the random arrival of photons at 
the detector and follows a Poisson distribution. The shot noise variance is therefore given 
directly by the number of detected photo-electrons en . For OCT, the noise is dominated by 

the DC contribution of the signal. Assuming further that the power of the reference arm is 
much larger than the power of the sample arm, the shot noise per detector element in SD- and 
SS-OCT becomes, respectively, 

 
2 2

2 2 2
, ,, [ ]i

SD shot ref SS shot ref

e e t
P N P e

E Eν ν

η τ ησ σ Δ= =   (8) 

In TD-OCT the photocurrent associated with the OCT signal is recorded with an 
electronic detection bandwidth B. The shot noise in case of photo current reads 
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2
. 2 2TD shot ref

v

e
eBi eB P

E

ησ = = , assuming again dominant reference arm power. The shot noise 

per unit bandwidth is then given by, 

 
2

2 2
,

2
[( / ) / ]TD shot ref

v

e
P e s Hz

E

ησ =   (9) 

The RIN or BE noise term expresses random fluctuations in intensity, which scales 
inversely with the optical bandwidth per detector element, and quadratic with the optical 
power. The total noise variance in detected photo-electrons squared per read out cycle and per 
spectral detector element for SD-OCT is given by [14,15]. 

 

22
22 2( ) [ ]ref i ref i coh

SD r d
i

e P eP

NE NE
k e

ν ν

η τ η τ τσ σ
τ+

 
= + +  

 
  (10) 

For SS-OCT the total noise variance in detected photo-electrons squared per sampling time is 
given by, 

 2

22
2 2( ) [ ]ref ref coh
SS th

e P eP

E E

t t
k e

tν ν

η η τσ σ
 

= + +  Δ


Δ



Δ
  (11) 

and for TD-OCT the total noise variance in photocurrent squared is given by [40,41]. 

 ( )
22

22 2( ) [ / ]
2

2ref ref
TD th coh

e P eP
B

E E
z e s

ν ν

η η
σ σ τ

  
 = + +  
   

  (12) 

The RIN noise term is proportional to /coh iτ τ  and /coh tτ Δ  for SD- and SS-OCT, 

respectively, and is given assuming a thermal light source, for which the inverse optical 
bandwidth per detection element can been expressed by the coherence time as [42], 

 2
0

1
2ln 2 / / ( )coh cτ π λ δλ

δν
= = ,  (13) 

with c the speed of light, 0λ  the center wavelength of the source, and δλ  the spectral width 

detected by a single detector element for SD-OCT or the instantaneous laser line width for 
SS-OCT, respectively. In SS-OCT the laser source RIN is in general much smaller than for a 
thermal light source. 

The expressions for the signal and noise in the Fourier domain have been expressed as a 
function of wavevector in relation to a single detection element (SD-OCT) or a single sample 
interval (SS-OCT). The actual FD-OCT signal is obtained by Fourier transform (FT) of the 
recorded spectral interference pattern ( )SDI k  or ( )SSI k . We therefore need to translate the 

expressions for the recorded signal and noise to the space domain. Parseval's theorem states 
that the integrated power before and after the FT is conserved. Since the noise is white, the 
noise power of each detector element in the spectral domain as expressed by the variance in 
Eqs. (10) and (11), will therefore be equal to the noise power per detector element after 
Fourier transformation. Hence, the noise variances after FT, ( )2

SD zσ  and ( )2
SS zσ , are related 

to the noise variance in the Fourier domain as ( ) ( )2 2
SD SDz kσ σ=  and ( ) ( )2 2

SS SSz kσ σ= . For 

the signal power also Parseval's theorem holds, but where the signal power in the Fourier 
domain is distributed equally over the spectrum (see Eqs. (5) and (6)), after the FT all the 
power will be concentrated in 2 pixels, one at positive and one at negative depth location. The 
signal amplitude after FT for SD-OCT and SS-OCT will then be, respectively, 
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2
( )

( ) ( ) ( ) 0
2

;ref sampleiSD
SD r SD r SD r

P Pe

E N

NS k
S z S z S z z

ν

η τ 
= − = = ≠ = 

 
  (14) 

 

2
( )

( ) ( ) ( ) 0
2

;ref sam
SS

S plS r S r SS reS

e tNS k
S z S z S zN P

E
zP

ν

η 
= − = = ≠ = 



Δ


  (15) 

The final SNR of SD-OCT becomes then, 

 

2 2 2

2

SD 22
2

ref sample i

ref i ref i coh
r d

i

e P P

NE
SNR

e P eP

NE NE

ν

ν ν

η τ

η τ η τ τσ
τ+

=
 

+ +  
 

  (16) 

and for SS-OCT, 

 

2 2 2

2

SS 22
2

ref sample

ref ref coh
th

e P P t N

E
SNR

e P t eP t

E E t

ν

ν ν

η

η η τσ

Δ

=
Δ Δ 

+ +   Δ 

  (17) 

where we assumed that ref sampleP P>> . In case of shot noise limited detection, i.e., 
2 2 2
shot r d RINσ σ σ+>> +  or 2 2 2

shot th RINσ σ σ>> + , the expression for the SNR in the shot noise limit 

becomes [14–16,36], 

 (shot ) (shot )
SD SS,sample i sampleP P tN

SNR SNR
E Eν ν

η τ η Δ
= =   (18) 

This expression can be compared to the respective expression for TD OCT which reads 

 (shot )
TD

sampl

v

eP
SN

B
R

E

η
=   (19) 

We immediately observe that both expressions for the SNR for the time domain and the 
Fourier domain are formally identical through the relation between electronic detection 
bandwidth B and integration or sampling time, ( )1 2SD iB τ=  for SD-OCT, ( )1 2SSB t= Δ  for 

SS-OCT, respectively. The important difference between the actual measured SNRs becomes 
clear by expressing the electronic bandwidth of TD-OCT into the integration time iτ  for SD-

OCT or the sampling interval tΔ  for SS-OCT. The carrier frequency f  generated by 

wavelength λ  for a reference arm mirror moving at velocity v  is given by vf k π= . The 

electronic bandwidth fΔ  of the signal for TD-OCT is given by [38], 

 
v g k

B
π
Δ

≈   (20) 

where kΔ  is defined by the spectral width of the source and vg is the group velocity, which 
can be assumed as the axial scanning velocity in TD-OCT. The group velocity of the TD-
OCT measurement is given by the depth range zΔ divided by the time to acquire a single A-
line, 

 v / /g iz z N tτ= Δ = Δ Δ   (21) 
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The corresponding −6 dB fall off depth range in SD- or SS-OCT is given by (see Izatt et al. 
[43] for an in depth analysis of ranging depth expressed in sampling interval or spectral 
resolution), 

 
2 ln 2

2
z

k k

π
δ δ

Δ = ≈   (22) 

with kδ  the spectrometer resolution or the instantaneous laser line width, respectively. 
Combining Eqs. (20)-(22) and assuming an optimal configuration where the sampling interval 
in k-space is equal to the spectrometer resolution or the instantaneous laser line width kδ and 
sampling the spectral width with N measurement such that k N kδΔ =  results in, 

 
1

2 2i

N
B

tτ
≈ =

Δ
  (23) 

Inserting this bandwidth into Eq. (19), the SNR for TD-OCT can be directly compared to 
that of SD- and SS-OCT, showing that the SNR for SD- and SS-OCT is better by 
approximately a factor N/2, 

 ,

2
SD SS

TD

SNR N

SNR
≈   (24) 

Examining the SNR expressions for SD- and SS-OCT in Eq. (18) in more detail, it is 
observed that for a single sample arm photon being detected per measurement time i N tτ = Δ , 

the SNR is already 1, meaning that FD-OCT is sensitive to a single photon, and it is hard to 
imagine that this can be improved upon within the realm of classical optics. The second 
observation is that the SNR in FD-OCT does not depend on the bandwidth of the source. In 
TD-OCT the SNR (Eq. (19)) depends on the optical bandwidth of the source through the 
electronic bandwidth B. When the optical bandwidth increases, also the electronic bandwidth 
needs to increase (Eq. (20)), leading to a lower SNR. As a consequence, FD-OCT is ideally 
suited for Ultra High Resolution (UHR) OCT compared to TD-OCT. However, since in FD-
OCT the number of photons detected from within a tissue slice is proportional to the system 
resolution, the total number of detected photons per depth resolution will be lower in an UHR 
FD-OCT system compared to a standard FD-OCT system. 

A difference between SD- and SS-OCT is the magnitude of the RIN noise term. From 
Eqs. (10) - (11), 

 

2 2 2
,2 2

, , 2
,

, ,ref i ref RIN SScoh coh i
RIN SD RIN SS

i RIN SD

eP eP t
N

NE E t tν ν

η τ η στ τ τσ σ
τ σ

Δ   
= =  = =    Δ Δ   

. (25) 

It is clear the RIN noise for SS-OCT is orders of magnitude larger. Therefore, balanced 
detection is in general used in SS-OCT systems to cancel or significantly suppress the RIN 
noise, although the laser source RIN is in general much smaller than for a thermal light 
source, which was assumed here. 

The sensitivity Σ  is obtained by setting Eq. (16) or Eq. (17) equal to one, and expressing 
for the inverse sample reflectivity 1/Rsample, assuming sܲample ∝ ܴsample ଴ܲ. Sensitivity in FD-
OCT is best understood by plotting the sensitivity contributions as function of reference arm 
power Pref. The graphics in Fig. 4 assumes again Pref>>Psample. For small Pref the receiver 
noise contribution dominates and the sensitivity increases linearly with Pref until it comes 
close to the shot noise limit. Shot noise limited SNR and sensitivity is independent of Pref, and 
depends only on the amount of photons being backscattered from the sample Psample . If the 
reference arm power is further increased, RIN becomes dominant, and the sensitivity 
decreases inversely proportional with Pref. In case of ideal balanced detection, RIN will be 
suppressed, and the sensitivity approaches asymptotically the shot noise limited value with 
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reference arm power and the integration time, and the relative intensity noise for a thermal 

light source
2

ref i coh

i

eP

E Nν

η τ τ
τ

 
 
 

,which is proportional to the reference arm power squared, the 

integration time and the coherence time cohτ  (Eq. (13)). The optimal signal to noise 

performance is achieved when shot noise dominates both read-out noise and relative intensity 
noise (RIN) [40]. Shot noise dominates read-out and dark noise when their ratio is larger than 
1, i.e., 2 2 1ref i r de P E Nνη τ σ + > . Shot noise dominates RIN when their ratio is larger than one, 

i.e., 1ref cohE N Pν η τ > . The optimal reference arm power is found when read-out noise and 

dark noise are equal to the RIN [30]. 

 
2

2 ref i coh
r d

i

eP

E Nν

η τ τσ
τ+

 
=  
 

.  (26) 

Thus, for a system to operate close to shot noise limited performance, shot noise should 
dominate read-out noise and dark noise and RIN noise at the optimal reference arm power, 

 r d
ref

i coh

E N
P

e
νσ

η τ τ
+= .  (27) 

At this optimal reference arm power, the inequalities describing shot noise dominance over 
read-out noise and RIN, respectively, reduce to the same equation, 

 1i

rd coh

e τ
σ τ

> .  (28) 

Since the A-line rate is inversely proportional to the integration time iτ  one would like to 

choose the integration time as short as possible, and since the coherence time cohτ  is 

inversely related to the spectral resolution of the spectrometer which in turn relates linearly to 
the maximum depth range of the system, one would like to choose the coherence time as long 
as possible. Equation (28) describes the tradeoff between these performance parameters for an 
SD-OCT system with respect to remaining in the shot noise limited sensitivity region. 

Autocorrelation noise 

Fourier Domain OCT is based on spectral interferometry, where recombined light from 
reference and sample arms is spectrally separated, detected and converted into a depth profile. 
The detected interference signal at the spectrometer may be expressed as [44]. 

 ( ) ( ) 2 ( ) ( ) cos( ) ( )r s r n n s
n

I k I k I k I k k z I kα= + +   (29) 

where ( )rI k  and ( )sI k  are the wavelength-dependent intensities reflected from reference 

and sample arms, respectively, and k is the wave number. The second term on the right hand 
side of Eq. (29) represents the interference between light returning from reference and sample 

arms. nα  is the square root of the sample reflectivity at depth nz . Depth information is 

retrieved by performing an inverse Fourier transform of Eq. (29), yielding the following 
convolution [44]. 
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21 2 2 2 2 2[ ( )] ( ) (0) ( ) ( )FT I k z z z z z O I I

n n n n s r
n n

δ α δ α δ
  −  = Γ ⊗ + − + + +      

, (30) 

with Γ(z) representing the envelope of the coherence function. The first term in the braces on 
the right hand side describes the autocorrelation signal from the reference arm and has 
magnitude unity. The second and third terms are due to interference between light returning 
from reference and sample arms and form two images, where each has magnitude on the 
order of /s rI I . These two terms provide mirror images, where one is retained. The final 

term, with magnitude on the order of 2 2/s rI I , describes autocorrelation noise due to 

interference within the sample arm [20,44]. Is and Ir represent the total intensity reflected 
from sample and reference arms, respectively. For SS-OCT the first and third term are 
significantly suppressed by balanced detection, for SD-OCT Eq. (30) indicates that the 
relative contribution of sample autocorrelation noise can be reduced by increasing the 
reference arm power with respect to the signal, decreasing the ratio 2 2/s rI I  and consequently 

reducing the contribution of autocorrelation noise in ultra-high-speed FD-OCT. 

Dynamic range and digitization depth 

Earlier SD-OCT system designs emphasized the necessity of large well depth (number of 
electrons that could be stored in a single element of the CCD) and large bit depth as an 
important consideration to realize the high sensitivity and dynamic range that can be achieved 
by OCT. Sensitivity is the ratio of maximum signal over noise floor, where the maximum 
signal is defined by placing a perfect reflector in the sample arm. The dynamic range of a 
system is the maximum signal over the noise floor that a particular system can measure 
without e.g., saturating a detector, overloading an amplifier or exceeding a digitization range. 
In practice, no TD or SD-OCT system realizes a dynamic range equal to the sensitivity, which 
can easily be over 100 dB. In general, this is not necessary, since tissue reflectivity is at least 
4 orders of magnitude smaller than a perfect reflector. A system dynamic range of 40-60 dB 
suffices in most cases. 

A 60 dB dynamic range in a TD-OCT system would require at least a 10 bit A/D range (6 
dB per bit) digitizing the interference modulation on the DC background. An advantage of 
TD-OCT and SS-OCT systems is that balanced detection can be implemented easily and that 
the signal can be high pass filtered to remove the DC component and only pass the 
interference modulation to the digitization circuitry. In SD-OCT, the CCD detectors do not 
easily permit balanced detection and removal of a DC component, and considerations similar 
to that for a TD-OCT system suggest that for an SD-OCT system the A/D range needed to 
capture the interference modulation on top of the DC background with sufficient resolution to 
provide 40-60 dB dynamic range would require an A/D resolution significantly exceeding 
that of a TD-OCT system. Fortunately, the required bit resolution capturing the interference 
modulation to achieve 40-60 dB dynamic range turns out to be much smaller. 

In SD-OCT the reflectivity in z-space is given by the summed square of a single cosine 
modulation in k-space. The resolution of reflectivity in z-space is proportional to the 
resolution of the modulation depth of the spectrum, multiplied by the number of illuminated 
pixels of the camera (on the order of ~1000). Thus, a relative small resolution of the 
modulation depth of the spectrum (on the order of a few bits) gets amplified by the number of 
illuminated pixels, easily providing a dynamic range in z-space exceeding 40-60 dB. The 
same argument is valid for SS-OCT systems. The presence of multiple reflecting structures 
complicates matters. For example, two strong reflectors in the sample arm each create a 
periodic modulation of the spectrum. These modulations are summed and create a larger 
modulation depth of the spectrum on the DC background that should be captured without 
saturation of the CCD or clipping of the digitization circuitry. Therefore, the calculation of 
the dynamic range of a FD-OCT system is not a straightforward calculation of the strongest 
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single reflector that can be measured, but depends on the total power reflected by the sample. 
As the total reflected power increases, the dynamic range with which the reflectivity of a 
particular location can be measured decreases for a given A/D resolution. 

Experimental demonstration of SNR advantage 

A direct comparison between the SNR of a TD-OCT versus a SD-OCT was presented by de 
Boer et al. [28]. To compare directly the SNR performance, they used a combined TD-OCT 
and SD-OCT set-up presented in Fig. 5. 

 

Fig. 5. Time and Spectral domain system integrated into a single instrument for a direct 
comparison of the SNR. Reproduced from Ref [28]. with permission from the Optical Society 
of America. 

The power reflected by the weak reflector in the sample arm measured at the fiber tip in 
the detection arm was 1.3 nW. The polarization states of sample and reference arm light were 
carefully aligned to maximize interference. First, 256 depth profiles at a speed of 4 ms per 
depth profile were acquired with the TD-OCT system, scanning over a depth of 1.4 mm in air. 
The signal pass bandwidth (BW) was 100 kHz. Then the detection arm was connected to the 
spectrometer, and 256 spectra were acquired at a speed of 100 μs per spectrum. To reduce 
fixed pattern noise in the SD-OCT measurement [14], each individual spectrum was divided 
by the average spectrum of 1000 reference arm spectra. The resulting spectrum was 
multiplied by a Gaussian to reshape the spectrum [45]. A Fourier transform links z and k 
space. Because of the non-linear relation between k and λ, the spectra were interpolated to 
create evenly-spaced samples in the k domain [20] before Fourier transformation of the 
spectra to generate depth profiles. 

Figure 6 shows the averaged depth profiles acquired with the respective configurations, 
demonstrating a SNR of 44.3 and 50 dB for TD- and SD-OCT respectively. Both depth 
profiles were normalized on the reflectivity peak. The TD measurement was shifted such that 
the peaks coincide. Some fixed pattern noise was still present in the SD-OCT measurement, 
resulting in peaks at 84 and 126 μm. Since the SD-OCT system was 5.7 dB more sensitive, 
operated at a speed 40 times faster (corresponding to 16 dB) than the TD-OCT system, the 
combined sensitivity improvement was 21.7 dB or a factor of 148. The theoretical shot noise 
limited SNR in TD and SD are given by, respectively (see Eq. (19) and Eq. (18)) [14,15], 

 ,sample sample i
TD SD

P P
SNR SNR

E BW Eν ν

η η τ
= =   (31) 
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resulting in 46.7 dB (TD) and 51.9 dB (SD), where η  = 0.85 was used for a PIN diode in TD. 
The measured TD and SD SNR’s were respectively 2.4 and 1.9 dB less than the theoretical 
optimal performance, where 1 dB in TD was determined to be due to thermal noise 
contributing to the total noise. The measured coherence function FWHM in air was 6.3 μm in 
both TD- and SD-OCT. 

 

Fig. 6. Direct comparison of the SNR between SD and TD-OCT. Reproduced from Ref [28]. 
with permission from the Optical Society of America. 

Shot noise limited detection 

The different noise components present in the system were measured and analyzed to 
demonstrate that performance was shot-noise-limited. The read-out and shot noise at a 29.3 
kHz read-out rate are shown in Fig. 7. 

The noise was determined by calculating the variance at each camera pixel for 1000 
consecutive spectra. Dark noise measurements were taken with the source light off. Only light 
returning from the reference arm was used to measure the shot noise in the system. The shot 

noise expressed in number of electrons is ( )1/2
( )PVI eλ Δ , where ( )PVI λ  is the pixel value 

corresponding to the intensity at each CCD element, with values ranging from 0 to 1024 (10-
bits) and Δe is the analogue-to-digital conversion resolution, which corresponds to the 
number of electrons required for an incremental increase of 1 pixel value. Thus, the variance 
as measured in pixel values is defined as: 

 2 2( ) ( )PV r dI eσ λ λ σ += Δ +   (32) 

The first term on the right hand side of Eq. (32) is the shot noise contribution and the second 
term is the read-out contribution to the total noise. The CCD well depth was determined by 
fitting the theoretical expression for shot noise to the measured shot noise, using Δe as the 
fitting parameter and limiting the fit to the central 700 pixels. From this measurement, Δe was 
calculated to be 173 electrons. Assuming that the maximum pixel value corresponds to the 
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full well depth, a well depth of 177,000 electrons was calculated, in agreement with our 
previously published result [28]. Shot noise dominated read-out and dark noise when the 
intensity reached 6% of the saturation value. Relative intensity noise (RIN) was never 
dominant in this setup, since the maximum power per pixel (4.6 nW) at a 34.1 μs integration 
time does not meet the criteria for RIN dominated noise [28]. 

 

Fig. 7. Noise components in the detector. The shot noise level was determined with 
illumination of the reference arm only, and was used to determine the A/D resolution of the 
detector. The theoretical shot noise curve was fit using Eq. (32) to the measured noise, giving a 
Δe of 173 electrons and a corresponding well depth of 177,000 electrons. Reproduced from Ref 
[29]. with permission from the Optical Society of America. 

Remapping to k-space; sensitivity drop off as a function of depth; spectrometer 
resolution, fixed pattern noise removal 

In FD-OCT, the structural information, i.e. the depth profile (A-line), is obtained by Fourier 
transforming the optical spectrum of the interference as measured by a detector at the output 
of a Michelson interferometer [5,20]. Fourier transformation relates the physical distance (z) 
with the wave number (k = 2π/λ). The spectra obtained with FD-OCT are not necessarily 
evenly spaced in k-space. The importance of proper wavelength assignment for FD-OCT was 
first described by Wojtkowski and Leitgeb [20]. Incorrect wavelength mapping generates a 
depth-dependent broadening of the coherence peak similar in appearance to dispersion in 
structural OCT images. A proper depth profile can be obtained only after preprocessing to 
obtain data that is evenly spaced in k-space, and this requires accurate assessment of the 
wavelength corresponding to each spectral element. 

Depth dependent sensitivity 

In all FD-OCT methods, the sensitivity is dependent on the depth within an image. This roll-
off in sensitivity is related to the spectral resolution with which the signal can be detected. For 
SD-OCT systems the roll-off is caused by the inability to accurately measure the high 
frequency modulation of the detected spectrum, which is a combination of the effect of the 
finite pixel size of the array [14] and the finite spectral resolution of the spectrometer [30]. 
For SS-OCT the roll-off depends on the instantaneous line width of the light source and the 
detection bandwidth of the photodiode and digitizer. Figure 8 shows an example of this effect, 
where a weak reflector was placed in the sample arm at different depths. For an ideal system, 
one would expect that each peak would have the same height. 
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Fig. 8. The depth dependent loss in signal sensitivity from a weak reflector. The signal decayed 
16.7 dB between 0 and 2 mm. The peaks at 1.4 mm, 1.6 mm, and 1.85 mm are fixed pattern 
noise. Reproduced from Ref [29]. with permission from the Optical Society of America. 

Combining both effects by convolution of the finite pixel size with the Gaussian spectral 
resolution for SD-OCT or the instantaneous linewidth for SS-OCT yields the following 
expression for the sensitivity reduction, R, as a function of imaging depth, z [30], 

 
( )

( )

22 2 2

2

2
( ) exp

8ln 2/ 2

sin z d z
R z

dz d

π π ω
π

  = −  
   

  (33) 

where d is the maximum scan depth, and ω is the ratio of the spectral resolution to the 
sampling interval. Equation (33) was fit to the signal decay data presented in Fig. 8 with ω as 
a free parameter. Due to its proximity to the autocorrelation peak, the first data point was not 
included in the fit. The value for ω obtained from the fit was 1.85, demonstrating that the 
working spectral resolution was 0.139 nm. For an SS-OCT system this would have 
corresponded to an instantaneous line width of 0.139 nm. 

There are significant differences in depth dependent sensitivity performance between SD-
OCT and SS-OCT. Technologically it is much easier to achieve a narrow instantaneous line 
width in tunable light source than to manufacture a spectrometer covering more than 100 nm 
optical bandwidth with very high spectral resolution. This is especially true for short cavity 
lasers like VECSELs, with coherence lengths corresponding to centimeters of OCT ranging 
depth [46–48]. 

Motion artifacts and fringe washout 

As OCT utilizes lateral point-scanning, motion of the sample or scanning beam during the 
measurement causes SNR reduction and image degradation in both: SD-OCT and SS-OCT 
[49] Yun et al. theoretically investigated axial and lateral motion artifacts in continuous wave 
(CW) SD-OCT and SS-OCT, and experimentally demonstrated reduced axial and lateral 
motion artifacts using a pulsed source and a swept source in endoscopic imaging of biological 
tissue [49,50]. Stroboscopic illumination in full field OCT was demonstrated, resulting in 
reduced motion artifacts for in-vivo measurement [51]. In ophthalmic applications of SD-
OCT, SNR reduction caused by high speed lateral scanning of the beam over the retina may 
be dominant over axial patient motion. Pulsed illumination can reduce lateral motion artifacts, 
however care should be taken as pulsed illumination increases the RIN noise [50]. 
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5. Complex representation of the Fourier domain OCT signal 

Fourier transformation of the real valued spectral fringe OCT signal results in a linear 
summation of the structural information and two extra terms, the total intensity of the signal 
that appears as DC term at z = 0 and self- cross correlations between fields back reflected at 
individual sample structure layers (Eq. (30)). These latter terms are commonly referred to as 
auto-correlation or coherence noise terms [29,52]. There is also another side effect, which is 
an ambiguity with respect to the zero delay associated with the Hermitian nature of the 
inverse Fourier transform as it is applied to the real valued signal I(k). As a result, each 
structure term has its mirror image in the inverse Fourier space corresponding to negative 
positions with respect to zero optical path delay. Therefore, all structure terms should be 
confined to one half of the Fourier space to avoid an overlap between various signal 
component. In practice the imaging system should be designed in such way that an imaging 
depth should be significantly larger than the thickness of an imaged object. In such situation it 
is enough to adjust the reference arm delay to position the object within the range 
corresponding to half of the Fourier space. Such a simple procedure enables distinguishing 
between the cross-sectional image and coherence noise artifacts. In case the object thickness 
is longer than the distance corresponding to the half of Fourier space the coherence noise 
terms and symmetrical images mix together with the signal representing the actual axial 
sample structure and direct reconstruction of the true architecture of the measured sample 
becomes impossible. 

The reconstruction of the complex representation of the spectral fringe signal resolves this 
ambiguity and the image space can be doubled. As the complex space is dual (consisting sin 
and cos) it requires at least two phase-shifted copies (so-called frames) of the spectral fringes 
to calculate the complex signal. One of the most straightforward ways of the complex 
reconstruction is based only on two frames with a relative phase shift of 2π  [53,54]. A 

simple combination of two shifted spectra will still have a strong DC component as well as 
coherence noise terms. To use this technique, the reference intensity needs to be much larger 
than the sample intensity – a condition often fullfilled in biomedical applications. Then it is 
sufficient to subtract the reference spectrum from each spectral interference pattern to 
suppress the DC term along with the cross correlation terms. 

Mathematically the determination of the complex representation from real interferometric 
signals requires a minimum of three linearly independent equations [55]. This can be done by 
measuring at least three times the intensity signal with an additional phase shift introduced to 
each interference fringe pattern. The phase shift between measured fringe signals can be 
anything between 0 and π . In order to reduce the influence of phase shift errors it is also 
possible to create an over-determined system of equations measuring N fringe patterns with 
additional n phase shifts. 

There are many possible algorithms retrieving the phase information based on extended 
set of measurements with linear phase shifts including, three-, four-, five- and six frames 
techniques [55]. Initially the five frame method has been chosen for OCT applications 
because of its optimal performance in phase reconstruction [56,57]. In this technique five 
consecutive measurements of the spectral fringes Ι(ω) are needed with a phase increment of 
π/2. 

Figure 9 shows a results of complex SD-OCT imaging of a rabbit eye in vitro The 
autocorrelation terms located close to the zero path difference (central white stripe) and the 
superimposed mirror image are clearly visible. The five-frame technique efficiently reduces 
these artifacts and uncovers the details of the sample (Fig. 9, right panel). 
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position on the scanning mirror. This method does not need any additional phase shifting 
device, but comes at the price of rigid setting of scanning field of view and speed [67]. 

An attractive alternative to complex signal retrieval for full range imaging in FD-OCT is 
dispersion encoded full range OCT. There, one uses the fact that the complex conjugate signal 
term is affected asymmetrically by higher order dispersion. Hence, iterative post-processing 
algorithms allow dispersing the complex conjugate terms below noise in favor of the actual 
sample terms [68]. Passive suppression of mirror terms as well as off-setting the sensitivity 
roll-off envelope to larger depth positions is achieved by Talbot band imaging [69]. 

For SS-OCT it is possible to perform true heterodyne detection by locking the detector to 
a sinusoidal reference arm delay modulation. It is relatively easy to implement frequency 
shifting devices such as acousto-optic frequency shifters (AOFS) allowing for high speed 
quadrature detection with fast PIN diodes [59,70,71]. As a result, it is possible to introduce 
the carrier frequency to the spectral fringe signal and remove the complex conjugate artifacts 
by quadrature detection without doubling the measurement range. In the case of frequency 
shifting of the spectral fringe signal the carrier frequency introduced by the phase modulator 
placed in the reference arm of the OCT interferometer establishes the reference point for the 
zero optical path delay. 

In general, full range imaging has its importance for spectrometer based SD-OCT, where 
on the one hand spectral sampling and the related maximal depth range is limited by the finite 
number of linear sensor elements, and on the other hand the strong SNR roll-off in depth can 
be relaxed by imaging across the zero delay position. SS-OCT, however, is more flexible 
concerning the spectral sampling, usually exhibiting exceptional depth ranging capabilities 
with low SNR roll-off. Full range imaging has therefore become less important for classical 
point scanning SS-OCT. The situation is different in full field SS-OCT, where an array sensor 
samples the spectrum over time. Since available array sensors are still relatively slow, the 
number of recorded points needs to be kept small to avoid large measurement times and 
resulting motion distortions of the spectral interference fringe signal. Applying a simple 
method of reference arm tilting with respect to the sample arm at the sensor plane introduces 
a lateral spatial modulation just as in holography [62]. Spatial frequency filtering extracts the 
interference signal, and allows again for complex OCT signal reconstruction. Thereby the 
needed number of spectral samples can be reduced by a factor of two to facilitate sufficient 
axial range for in-vivo OCT imaging [72,73]. 

6. Phase stability and its impact on functional OCT 

In SD-OCT, a phase-sensitive image is generated by simply determining the phase difference 
between points at the same depth in adjacent A-lines. This parallels the time domain method 
pioneered by Zhao et al. [74,75] The superior phase stability of SD-OCT, due to the absence 
of moving parts, was demonstrated by White et al. [25] The data was acquired with a 
stationary mirror in the sample arm, without scanning the incident beam. Ideally, interference 
between sample and reference arm light should have identical phase at the mirror position for 
all A-lines. This condition underlies the assumption that any phase difference between 
adjacent A-lines is solely due to axial motion within the sample. The actual phase varies in a 
Gaussian manner about this ideal, where we present the measured probability distribution of 
phase differences with a standard deviation of 0.296 ± 0.003°. This value is over 25 times 
lower than previously quantified figures for TD-OCT systems [76,77]. Phase sensitive 
detection is of particular interest for quantifying axial motion, which is the subject of Doppler 
OCT or OCT elastography. It has also been used in polarization sensitive OCT to calculate 
phase retardation, as well as for phase contrast microscopy. 
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Fig. 10. Probability distribution of the measured phase difference between adjacent A-lines in 
SD-OCT, with a stationary reflector in the sample arm. Bars: Counted phase difference for 
9990 A-lines. Bin size = 0.05°. Solid line: Gaussian fit to the distribution, with a measured 
standard deviation of 0.296 ± 0.003°. Reproduced from Ref [25]. with permission from the 
Optical Society of America. 

6.1. Doppler OCT and OCT angiography 

The main short-coming of OCT based on backscattering alone is its missing specificity to 
biological structures of interest. Functional extensions allow partially mitigating this 
deficiency by providing label-free intrinsic contrast of tissue. Doppler OCT as one of the 
most promising functional OCT candidate, provides depth resolved quantitative information 
on blood flow and velocity thereby generating angiographic maps without the need of 
contrast agents. The first Doppler OCT images based on TD-OCT were already presented in 
1997 by Chen et al. and Izatt et al. [78,79]. In the past, phase-resolved Doppler OCT (D-
OCT) based on time domain OCT (TD-OCT) was proven able to make high-resolution, high-
velocity-sensitivity cross-sectional images of in vivo blood flow [74,75,77,80–82]. D-OCT 
measurements of blood flow in the human retina have been demonstrated [83,84], yet the 
accuracy and sensitivity was compromised by A-line rate and patient motion artifacts, which 
can introduce phase inaccuracy and obscure true retinal topography. As a result, they were too 
slow to assess retinal vasculature over a large range of vessel sizes and were limited in field 
of view [85]. In addition, for precise flow quantification information about the illumination 
angle with respect to the flow direction is needed [86]. Combining Optical Doppler 
Tomography with the superior sensitivity and speed of SD-OCT has allowed a significant 
improvement in detecting Doppler signals in vivo. In the first combination of these 
technologies, velocity of a moving mirror and capillary tube flow was demonstrated [87], 
followed by in vivo demonstration of retinal blood flow [24,25]. 

In case of Doppler SD-OCT, operating at an acquisition speed of 29kHz, a phase standard 
deviation of 0.296°, as demonstrated in Fig. 10, corresponds to a minimum detectable 
Doppler shift fD of ± 25 Hz. With the relation between Doppler frequency shift and axial 
velocity being Dv f 2λ= , the minimum Doppler shift corresponds to a minimum axial 

velocity of only about 10µm/s assuming a central wavelength λ =  840nm. The sensitivity to 
low flow velocities could be considerably improved by increasing the time delay between A-
line measurements, as has been demonstrated by Refs [88–91]. For rapid flow, the fact that 
axial velocity is determined from circular phase shifts might result in phase wrapping. The 
unambiguous axial velocity range is determined as v (4 )λ τ≤ With a time difference of 34.1 

μs between acquired A-lines, phase wrapping occurs at Doppler shifts greater than 15 kHz. 
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thereby sensitive to motion of red blood cells, and achieves high micro-vascular contrast 
down to the level of smallest capillaries [88,91,112,116–122]. Furthermore, OCTA is 
intrinsically co-registered with OCT structural information. Such label-free OCT angiography 
is becoming a clinical standard in retinal OCT nowadays establishing vascular structural 
pathologies as novel biomarker of retinal disease. Apart from ophthalmic applications, OCTA 
also pushes other fields of application such as dermatology [123], or endoscopy [124]. An 
example of a retinal OCTA image is shown in Fig. 11. 

7. Advantages in clinical Fourier domain OCT imaging 

One of the most important implication of introducing Fourier Domain detection to OCT 
imaging is the substantial improvement in the quality of cross-sectional images acquired at 
high speeds. Figure 12 shows an example of the evolution of Fourier domain OCT imaging 
quality within a decade starting from the first in vivo eye imaging measurements performed in 
2002 up to 2012 when well optimized and developed instrumentation had evolved. For 
example, a substantial increase of axial resolution could be obtained because of a lack of a 
fundamental relationship between imaging sensitivity and axial resolution in the case of 
Fourier Domain detection [52,125]. In addition, in FD-OCT the interference fringe signal is 
not processed by analog electronics, and all operations enabling object reconstruction are 
performed on digital data. This allows for a better compensation of unfavorable effects 
influencing the loss of signal and the resolution than in the case of TD-OCT. 

The improvement of imaging sensitivity of FD-OCT systems implies the possibility of 
measuring OCT data in all three dimensions in a time shorter than 1 second. This in turn 
enables to create virtual volumetric (3D) reconstruction of the tissue in clinical conditions. 
The full volumetric information gives access to a reconstruction of any cross-sectional image 
along any arbitrarily chosen plane. The combination of imaging in three dimensions with high 
resolution enables to localize precisely the position of cross-sections. The practical use of 
volumetric data is far greater than the selection of a cross-sectional images. One of the main 
practical advantages of having access to volumetric data is the possibility of an accurate 
registration of cross-sectional images to other optical imaging techniques, which are currently 
treated as gold standards in medical imaging either for diagnosis or treatment monitoring. 
Three-dimensional FD-OCT imaging also helped to introduce quantitative and clinically 
relevant morphometric analysis. An accurate quantitative data processing of various physical 
parameters including: thickness of layers, distances between characteristic points, the volume 
of chosen structures or the volume of structures of interest help to provide more objective 
diagnosis and accurate monitoring of disease progression and treatment success. Another very 
practical advantage is the possibility of obtaining clinically relevant information with a single 
OCT instrument, where previously several diagnostics devices were needed. 
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Fig. 12. : One decade of progress in ophthalmic FD-OCT imaging: Left data published in 2002 
[21,53,126] and FD-OCT cross-sectional ophthalmic images published in 2012 [127]. 

In ophthalmology for example it is possible to reconstruct images of the eye’s fundus 
analogous to images obtained by scanning laser ophthalmoscopy [125,128,129], by averaging 
the backreflected intensity along the axis determined by the direction of light propagation. 
Such a FD-OCT fundus image clearly reconstructs the retinal vasculature and, in the case of 
diseases it provides information about the location and extension of pathologic changes. The 
retinal vasculature creates a unique pattern and may be used for very precise localization of 
OCT data with respect to the classical fundus photo or angiography. Once the volumetric 
OCT data are acquired, it is also possible to generate projections using only a fragment of the 
volume. In the case of the retina we may choose data corresponding to a specific tissue layer 
and create its projection [128,130–132]. One of the most important steps in ophthalmic OCT 
applications is incorporation of standard surgical microscopes with FD-OCT [133–135]. This 
enables to take full advantage of the excellent optics of current microscope systems and add 
another dimension delivered by OCT. The challenge here is to have high quality cross-
sectional images in the shortest possible time to improve the precision of manual surgery 
procedures. It is also important to ensure that cross-sectional images are visible in real time 
through the microscopic ocular. 

High speed OCT imaging using Fourier domain detection can also be beneficial in 
applications other than ophthalmology. For example, in cardiology one of the main challenges 
is large scale imaging while searching for small focal (localized) regions to understand 
coronary atherosclerosis and to monitor the response to intravascular interventions such as 
implementation of stents or angioplasty. Fourier Domain OCT imaging has also the potential 
of providing the ability to survey large tissue volumes in real time in endoscopic and 
laparoscopic applications. In contrast to excisional biopsy, OCT examination enables for 
screening of early neoplastic localized changes in large luminal surface areas. Another 
interesting example of applications demonstrating the capabilities of high-speed Fourier 
domain OCT imaging is developmental biology. The ability to directly image dynamic 
changes in the cellular architecture enhances understanding of normal development as well as 
congenital abnormalities in live model systems [136–140]. 
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8. Parallel FD-OCT 

A main success of FD-OCT was to achieve high A-scan rates that enabled comprehensive 3D 
images of tissue structures. SS-OCT has shown up-to-date the highest data recording rates at 
several million A-scan per second [141]. The gain in speed comes however at the cost of 
expensive light source technology, as well as complex data acquisition and system 
synchronization. Thus, MHz swept source technology is still a challenge for clinical use, 
although it is desirable to cover large field of views both in standard OCT as well as for 
OCTA without compromising lateral sampling density. Even if the technological challenges 
are solved, point-scanning FD-OCT systems ultimately hit the physical boundary given by the 
detection process itself. According to Eq. (18), the sensitivity of FD-OCT systems in the shot 
noise limit is proportional to the power illuminating the sample and inversely proportional to 
imaging speed, expressed by the A-scan rate 1 iτ  or 1 N tΔ . Increasing the speed, therefore, 

requires an equal increase in sample beam intensity to keep the sensitivity constant. This is 
particularly critical for in-vivo imaging, since the applied optical power is limited by laser 
safety regulations. The situation is relaxed for parallel image acquisition schemes using 
extended illumination, such as in line- or full-field OCT, where higher power can be applied 
for the same exposure time settings. Although, first parallel OCT schemes have been 
introduced already for TD-OCT, the combination with FD-OCT is promising for actual in-
vivo applications regarding sensitivity and imaging speed. 

The principle of line field (LF) FD-OCTwas first demonstrated by Zuluaga and Richards-
Kortum [142]: a cylindrical lens produces a line illumination at the sample, that is then 
imaged onto a 2D sensor after having been dispersed into its spectral components by passing 
a diffraction grating. The 2D sensor acquires then the information of a full B-scan, where 
typically the vertical sensor coordinate samples the lateral object structure whereas the 
horizontal coordinate records the spectral interference pattern at each lateral position. First in-
vivo tomograms of the human eye using LF FD-OCT have been presented by Grajciar et al. 
[143]. 3-D human retinal images have been shown by Nakamura et al. [144]. As has been 
outlined earlier, SD-OCT suffers from pixel cross talk resulting in strong sensitivity roll-off. 
SS-OCT is superior with respect to roll-off, as it samples the spectral data separated in time, 
and the instantaneous coherence length of the source itself ultimately determines the axial 
SNR roll-off performance. Parallel SS-OCT is in fact the most simple OCT configuration, as 
it does not require any lateral beam steering in case of full-field illumination: a full volume is 
recorded with a single wavelength sweep [145,146]. The only limitation in case of full-field 
SS-OCT is the frame rate of the sensor, as well as loss in structural contrast due to the 
missing confocal gating mechanism. Equipped with expensive high-speed sensor technology, 
Bonin et al. demonstrated retinal volumetric imaging with several MHz equivalent A-
scans/sec [147]. Line-field illumination on the other hand maintains half of the confocal 
gating of out-of-focus stray light. Fechtig et al. showed retinal line-field SS-OCT with off-
shelve CMOS sensor technology at up to 1MHz A-scan rate with a single frame sensitivity of 
more than 93dB [72] (Fig. 13). In order to keep sufficient axial samples, given the speed 
restrictions of the sensor, a hybrid holographic and FD-OCT configuration has been 
employed using off-axis reference arm illumination, which enables full range FD-OCT 
imaging without active phase shifting [73,148]. Parallel signal acquisition promises 
comprehensive in-vivo images both for OCT and OCTA, and exhibits in addition higher 
phase stability along the parallel direction, enabling wavefront sensing and correction via 
digital adaptive optics [149,150]. 
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Fig. 13. (a) Stitched widefield retinal tomogram across central retina. The total field of view is 
approx. 30° (b) Volume rendered image of 6x6deg across optic nerve head. (ILM - internal 
limiting membrane, ONL - outer nuclear layer, OPL - outer plexiform layer, INL - inner 
nuclear layer, IPL - inner plexiform layer, GCL - ganglion cell layer, NFL - nerve fiber layer, 
ELM - external limiting membrane, RPE - retinal pigment epithelium, PJ – inner-outer 
photoreceptor segment junction) (reproduced from [72]) 

9. Summary 

Although the principle of spectral channeling of interference signals has been known earlier 
and first demonstration of the principle in the context of biometry had been demonstrated, the 
real impact came with the recognition and demonstration of the intrinsic advantage in 
sensitivity of Fourier Domain OCT. This set the basis for modern structural as well as 
functional OCT systems as well as for future developments to further improve OCT imaging 
performance. The advantage in sensitivity immediately translates into higher imaging speed, 
resulting in improved image contrast, full volumetric tissue information, supporting high 
resolution in all three dimensions. This dramatic improvement in performance had an 
immediate impact on clinical applications, and paved the way for a new understanding of 
tissue physiology, pathogenesis. Ophthalmology has profited most of those developments; as 
of today every second worldwide a retinal scan is taken with modern OCT devices in a fully 
non-invasive and contact-free manner. Novel developments, that are currently in translation 
into clinical practice, such as contrast agent free OCT angiography, are changing the 
paradigms of clinical treatment monitoring. New biomarkers of disease based on vascular 
pattern, and tissue structure resolved with close to cellular resolution are becoming important 
tools for the development of novel treatment methods and are setting the basis for early 
diagnosis of major diseases, including cancer, diabetes, and age related and 
neurodegenerative diseases, such as AMD, Alzheimer’s, or Parkinson’s disease. 

Although it is doubted that OCT will experience a similar disruptive technological change 
as with the recognition of the FD-OCT advantage, further improvements in imaging 
performance can be still expected. In particular, the improvement in imaging speed over the 
last decade has been impressive, reaching nowadays several hundreds of thousands of A-
scans/second for clinical systems and even several millions of A-scans/sec for research 
systems. Improved speed is of critical importance for several reasons: it allows enhancing the 
field of view for comprehensive wide-field imaging, helps to keep imaging times low to avoid 
motion distortions, results in enhanced image contrast through speckle averaging, and 
supports real time view not only of tomograms, but already of full 3D rendered volumes. The 
last feature is currently in translation into intrasurgical OCT, for accurate surgical guidance in 
3D. 

Advanced swept source technology such as akinetic sources or electronically pumped 
VCSELs promises high speed imaging at ultimately lower cost, with the further potential to 
be fully integrated into single photonic chips. Again, the intrinsic advantage in sensitivity of 
FD-OCT helps to overcome limitations related to coupling losses and waveguide losses, and 
will allow for competitive image quality of pocket size OCT devices in the near future. 
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Still point scanning OCT ultimately hits the physical boundary of detection sensitivity 
when further increasing imaging speed. Multibeam OCT scanning different tissue regions in 
parallel, or parallel OCT relax this boundary and promise further improvement in imaging 
speed keeping clinically relevant imaging performance. Parallel imaging in addition with its 
intrinsic phase stability over the full field of view opens new methods for wavefront 
manipulation and control, to realize cellular tissue imaging along an extended depth of focus, 
and aberration correction without the need of hardware adaptive optics components. 

After almost two decades, FD-OCT is still an exciting and a dynamic field of engineering 
and development, extending continuously its application to new fields in medicine and 
biology. This excitement is driven by the great impact of OCT technology made on lives of a 
large number of humans worldwide, whose health condition can be screened and monitored 
by OCT instruments. This would not be possible without one of the most important turning 
points in the history of OCT technology development, which was the application of Fourier 
domain detection enabling for comprehensive 3D in vivo imaging. 
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